关于 三台县哪里酒店宾馆小姐服务〖8843O306VX〗服务真实吓槐 的搜索结果,共1041
h****e 2018-07-10
程序:我从来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了例,规模、部署情况、例运行状况如何? 2.我从来? 的上游有些,不同的上游流量如何分配? 3.我往去? 的下游有些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器上部署信息(机器IP,部署路径,配置,端口信息),例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损流程 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几器 目前都荒废了,因为卡得一匹。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
M****点 2018-07-10
中国云计算现状——产品篇
客户没有对接成本,可以随时更换其他云厂商,或默认即使用多个云厂商,普通项目不需要高级售前、解决方案和质性定制开发。 客户只关注价格和质量两个维度,不用承担太多选型责任,大不了切走就行,甚至有专门的中立CDN监测的平。 虽然业内对CDN生意评价不高,认为这就是卖资源,但每个云平都将CDN收入列为重要单项,成熟的模式催熟了巨大蛋糕。 关于Serverless的介绍,我建议大家搜一下ZStack张鑫的那篇文章。Serverless的之处在于要求程序为自己进行改造,其他强调按需付费的计算只是快速释放资源的把戏,Serverless才是正的计算能力集装箱,未来计算场景下的CDN。 、SaaS产品 其SaaS产品和狭义的云计算没一毛钱关系,广义的云计算连设备租赁和人员外包都能算进去吹水框架,自然也给SaaS云预留了位置。
流****水 2018-07-11
度云企业级运维平——NoahEE
管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平上各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几甚至一机器上,进行变更等运维操作简单直接,登录到机器上人工操作就好了。随着业的发展,分布式应用与的广泛使用,我们越来越多的面临着运维场景与运维执行之间的脱节。 举个例子,今天17:00开始对X机房的地图导航模块进行升级。对于产品研发的同学来说,关注点是语义明确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在。在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部门(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本上升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。
s****d 2018-07-11
亿元级云用户分析
咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。 资源持续--亿元大客户不要求云平永不故障,但要云平承诺清晰SLA,事后给个合理的故障报告。 后记 如我在《复制阿云并不难》中所说的,一个云行业半个IT界”,云行业将垄断IT界一半的营收和利润。本文讨论的亿元大项目,目标就是拿下IT圈的营收上限。现在亿元大单都是云厂商在侵入系统集成商的势力范围,后面云厂商会得到越来越多的亿元大单。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
、正确的时间是向量 Linux环境下有两个常用工具,NTPD和ntpdate。NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业安全性,甚至部分程序崩溃的稀糊涂。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为上层托管平的底层工具链,为PaaS平提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线上故障; 业的多地域部署; 多种网络环境及大包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合上面场景,向大家介绍百度持续部署是如何现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行际任。涉及大包及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一套既灵活又完整的包规范。
m****t 2018-07-11
设计中立公有云云管平
第一本文目标 我本来没兴趣写云管平的设计思路的,我想你也没兴趣读,觉得这个问题没什么难度、没什么意义,网上一搜也有很多成型产品。但架不住客户的要求动笔去写之后,我发现设计云管平像素描画苹果、的鸡蛋炒饼一样,看似简单的需求,却考察很深的基本功。 此文的第一目标不是要上云管平的客户,而是要被管理的云平的售前、产品和研发,本文是站在客户角度去看云端资源到底有何用途的一个梳理列表,各云厂商要坚持自己的产品战略,但引导客户需求不等于忽略客户需求。 此文的直接目标就是采购大量公有云资源的厂商。本文是为说清楚云平些功能是最重要的,些功能是可有可无的。无论是自己研发云管平还是买云管软件,这个云管平必须符合些特性、支持些功能。 第二云管平概述 说完了本文的目标读者,我们再看核心问题,为什么要做一个云管平。 当客户的非CDN云资源采购金额过500万以后,如果其子项目之间没有内网互通的需求,甚至刻意要做成广域网容灾互备时,这时候我们该做一个跨厂商的云端资源管理方案了。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
但是从云资源的管理、调度、监控软件,到客户界面,API管理、账户和后策略层面,越往上走的软件质量还不如XXXX,此处省略一万五千字,客户自己揣摩吧。 厂商深层原因 厂商报故障就跟滚刀肉挨揍一样,脸疼了就把屁股凑过来,屁股疼了就捏捏脸,一般不会按住一只羊使劲薅羊毛,毕竟云报障也要负载均衡。但客户自己心要有秆秤,厂商究竟是偶尔发挥失常还是烂泥扶不上墙,故障的性质对长久的品质很重要。 我列一下潜在的故障原因,些故障能忍,些故障不能忍,这些要云客户自己评估了。 技术原因 IaaS的核心主体功能(云主机、云硬盘、VPC),在没有特型要求前提下,是可以用开源方案搭建。如果是云厂商连个开源平标准模块都部署失败,那就该换厂商了;如果是偶发的BUG,那确客户要自认倒霉,因为友商也会遇到同样问题。 现在容易出问题的是云平的运营维护和云厂商的自定义管理模块,客户就是缺合格运维才被逼上的云平,但云厂商自己也缺人;在软件BUG这一部分我已经吐槽过做云平外延模块程序员的技能水平了。这些地方出了问题该投诉投诉、该索赔索赔,逼着客户去招更敬业专业的工程师。
追****圣 2018-07-11
给书记省长讲清楚云计算
他们最大的优点和缺点都是为政府和国企为生,他们可以买技术搭建出云平,但他们建好云平的目的是再卖给本地政府和国企。这类企业需要完成从供应商到合作方的转变。 云计算不是万能药,它无法解决些问题。 在地方政企看来,云计算只是一种商业形式,不能对它报以不切际的期望值。 云计算行业不需要大量雇佣本地劳动力,无法解决大批就业问题;云计算核心员工会呆在一线城市远程操控,很难将云计算人才引进到当地。 云计算不会产生污染,所以不用考虑环保减排问题,但其带来的环保节能问题很严重,每个数据中心都会占用大量电力。 对于四线城市政府和中型国企,因为现困难资源有限是搞不了云计算的;二线城市和大型国企才能提供云计算公司感兴趣的资源。
w****t 2018-07-10
AIOps中的四大金刚
在AIOps落地施中,运维工程师是处于中心的角色,也赋予了新的职责,他们是AIOps具体施的需求提出者和成果验收者。具体职责包括: 在AIOps时代,运维工程师一方面需要熟悉运维领域的知识,了解运维的难题和解决思路;另一方面需要了解人工智能和机器学习的思路,能够理解些场景问题适合用机器学习方法解决,需要提供怎样的样本和数据,即成为AI在运维领域落地施的解决方案专家。 运维AI工程师 在单机房故障自愈场景中,运维AI工程师将机器学习的算法与际的故障处理业场景相结合,针对单机房故障场景的风险点,进行策略研发与验工作。如下图所示: 运维AI工程师分别设计了如下算法策略来满足整个复杂故障场景的自动决策: 异常检测算法:解决故障发现时指标异常判断问题,基于AI方法现较高的准确率和召回率,作为整个故障自愈的数据基础。 策略编排算法:基于当前线上的际流量和状态,设计损益计算模型,判断基于何种方式的操作组合或步骤,能够使整个自动止损带来收益最大,风险最。 流量调度算法:基于线上容量与时流量情况,进行精确流量比例计算,防御容量不足或不准风险,并现流量调度收益最大化。
布****五 2018-07-10
如何执行一条命令
面临的困难 命令行的要素,也是如何执行一条命令行面对的个问题,如前文所述,对于单机环境来说,这个问题在前人的努力下已经被很好的解决。可是如果要在几十万机器上每天执行几十亿条命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多器上执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
小****园 2018-07-10
让PB级云存储不再神秘
云计算是企业,云平是我们的供应商不是我们的管理者。TB级用户正是业高速发展的关键时刻,我们更要防备某些吃相难看的混蛋。 云存储相对业简单,遇到野蛮运营的问题主要集中在窃取数据、估算业量、恶意不兼容其他方面。 窃取用户数据指的是监守者自盗后自用,要是泄露给第方那是安全事故可以直接报警抓人,但平方自用用户数据很难抓现行。云存储大都是多媒体数据,谁敢盗播打官司就好;日志文件加密了就用不了云端大数据分析了,但不挂个人信息的基因测序样本被偷了也不怕。如果客户的特别害怕丢数据,云平没手段能自证清白,谁偷过用户数据只能听业内风闻。 正让用户头疼的是平方会根据计费日志估算你的业规模,就像区保安总共能看到你何时出门一样。据不可靠传闻,某厂商本来能拿到某云厂商母公司数亿美元投资,自吹数据量有数PB,该司投资部去调了一下他们的消费金额就取消投资了。单一个消费总金额就这么麻烦,访问日志可以看文件数量、用户规模分布和大致的动作类型,一个新兴企业最好还是把业分散在两个厂商那,毕竟他们两家不能核对你的账单。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
但客户上云就能少招一个研究这事的工程师,上云确也很有意义啊。 夜静人稀,沙子龙关好了门,一气把六十四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
若****客 2018-07-10
IT架构的本质--我的五点感悟
2.群集设计通用规则 前端复制后端拆,时改异步,组件互换 前端复制后端拆,时改异步,IO-算力-空间可互换——要做架构就要上群集,而群集设计调优翻来覆去就是这板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做水平复制扩容,在网站类应用上,无状态-会话保持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散微操作就越爽,但全局操作开销更大更难控制。 时改异步是我学的最后一门IT技术,绝大部分“时操作”都不是业需求,而是某应用无法看到后端和Peer状态,默认就要时处理结果了。CS模式的时操作会给支撑带来巨大压力,Peer合作的时操作可能会让数据申请方等一宿。架构师将一个无脑大事拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做全局事保障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。
TOP