关于 三唑仓多少钱一盒【V信;799.196.362】还 的搜索结果,共1254
摩****5 2018-07-11
都是防晒
双****4 2018-07-10
词向量(
为了能简单看到效果,教程只设置了经过很的训练就结束并得到如下的预测。我们的模型预测 among a group of 的下个词是the。这比较符合文法规律。如果我们训练时间更长,比如几个小时,那么我们会得到的下个预测是 workers。预测输出的格式如下所示: [[0.03768077 0.03463154 0.00018074 ... 0.00022283 0.00029888 0.02967956]] 0 the 其中第行表示预测词在词典上的概率分布,第二行表示概率最大的词对应的id,第行表示概率最大的词。
l****m 2018-07-10
词向量(
XX是个|V|×|V||V|×|V| 大小的矩阵,XijXij表示在所有语料中,词汇表VV(vocabulary)中第i个词和第j个词同时出现的词数,|V||V|为词汇表的大小。对XX做矩阵分解(如奇异值分解,Singular Value Decomposition [5]),得到的UU即视为所有词的词向量: X=USVTX=USVT 但这样的传统做法有很问题: 由于很词没有出现,导致矩阵极其稀疏,因此需要对词频做额外处理来达到好的矩阵分解效果; 矩阵非常大,维度太高(通常达到106×106106×106的数量级); 需要手动去掉停用词(如although, a,...),不然这些频繁出现的词也会影响矩阵分解的效果。 基于神经网络的模型不需要计算和存储个在全语料上统计产生的大表,而是通过学习语义息得到词向量,因此能很好地解决以上问题。在本章里,我们将展示基于神经网络训练词向量的细节,以及如何用PaddlePaddle训练个词向量模型。 效果展示 本章中,当词向量训练好后,我们可以用数据可视化算法t-SNE[4]画出词语特征在二维上的投影(如下图所示)。
TOP