关于 中江县找个小姐过夜服务一条龙〖8843O306VX〗服务真实喊 的搜索结果,共1850
h****e 2018-07-10
程序:我从哪里来?
在BNS系统单元表示例集合,般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统是唯的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景:我是名OP工程师,负责几十系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那么多部署信息,怎么办? 场景二:我是名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容怎么通知给下游模块? 场景三:我的部署例有出现故障了,我想对下游屏蔽该故障例,怎么办? 下面以简单的例子来说明,假设模块名是Server,它的上游是Proxy,下游是Redis,当出现变更或者故障时,如何让上游感知到呢? 当新增上线例、下线摘除例或者例发生故障时,BNS系统通部署在机器上的客户端时感知到例的状态变化,同时新增和删除例的变更情况会立即同步到分布式的缓存系统,这样用户通BNS名字就可以感知到下游的例变化。
w****0 2018-07-11
单机房故障自愈-黎明之战
干货概览 在故障自愈机器人,保你安心好睡眠,我们介绍了单机房故障自愈的必要性和解决思路。本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设遇到的常见问题及解决方法 基于网络故障及业故障场景的全面故障发现能力 百度统前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通流量调度进行止损: 1.存在单点 描述:系统内只有例或者多例全部部署在同物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来全局性影响。
疏****月 2018-07-09
键上线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称上线)是运维领域最常见的业类型,主要涉及线上代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的下,让数据自动生效》专门讨论)。般的业上线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由上线变更触发,如何减少变更人为误操作,提供灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了键上线部署系统——Archer。Archer致力于提供套产品线全程的可迁移发布解决方案,键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全程的自动操作。在操作方面,Archer提供了命令行工具作为发起次上线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业,Archer可以作为环节结合进整测试发布流水线
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
干货概览 在大型互联网公司,单机房故障因为其故障时间长、影响范围大,直是互联网公司运维人员的心头之痛。在传统的运维方式,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在际的运维,还有更多的因素需要考虑,例如机器是否会分配给不同部门(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本上升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这地基打好后,我们再来回顾下上面的例子。这例子,地图研发的同学就可以在运维平台导航的模块进行升级,运维平台会通管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统,我们可以对导航模块(而不是单台机器进行操作)添加些指标采集任,并在件达成时报警。管理通对资源合理的组织,极大的简化了运维操作,提升了运维效率。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
这次验好玩的地方在于: 我定35分的任计划,结果ntpd将时间跃变越了第35分直接到了37分,但该任计划仍然执行了。而从执行输出结果是37分来看,这不是步快跑的踩35分,而是第35分被越了不存在。 这验里坑很多,人要和时间赛跑才能完成验,我做了8次验成功了3次,每次都等了10分钟以上。这验也不够严谨,我只是拿crond做验,我在梦里记得其他有历史守规矩的程序也能和ntpd联动,但我没时间做验了,也希望有朋友能帮我答疑解惑。 附录2:网上能写NTPD和ntpdate的水文和本文内容有些类似,那是我多年以前写的,不是借鉴和抄袭,严肃脸。
布****五 2018-07-10
如何执行命令
部署升级 DevOps的概念如今日趋流行,部署升级越发成为开发运维重要的环,频繁的交互意味着频繁的部署。部署程可以拆解为两的步骤,是新软件包的上传,二是进程的重新启动。进程的重新启动不必多说,软件包的上传可能有多种方式,如sftp的集式,p2p的点对点式等。 监控采集 软件运维程需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策程更是需要采集大量的时信息(前期文章《百度大规模时序数据存储》介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,种是通软件提供的接口直接读取状态数据,另种是通日志/进程状态/系统状态等(如使用grep提取日志,通ps查询进程状态,通df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都有共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这基础能力,这也是今天我们的主题“如何执行命令”的意义所在。
M****点 2018-07-10
国云计算现状——产品篇
当客户的非CDN云资源采购金额500万以后,其子项目之间没有内网互通的需求,这时候该做跨厂商的云端资源管理方案了。现在虚拟机不能像CDN样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平台从计费和权限层面做好,至少在项目级别可以和多厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和可以让公司增加企业的融资概念和收入构成。型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴上说不要眼神也很诚。但具体参与,这类工作很少有成功案例,我做成功这类项目感慨也很深,本段落重点解释这些现象并给出建议。 先说IT咨询,去云计算平台吸引到的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为千元的咨询付费。现在高净值客户放出来的云计算咨询标了却没人投标,因为型云计算企业因为资质、高层合作、客户关系等原因没有投标的机会。 我们经常遇到咨询标,但我们也不想投这标。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动
首先被读取到的是/etc/fstab,各磁盘都挂载就位。这文件注释很简单但水很深,我们该用标签还是UUID来标识磁盘,文件系统自检功能要不要开,这都可以聊好几时。 看看各的启动优先级也是讲究多多的程,iptables会比network先启动这类依存关系很好理解;但我也遇到云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以上内容只能算精简科普版的Linux系统启动程,正式版的启动程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都上云了,它们就只是闲聊的谈资了。但客户上云就能少招研究这事的工程师,上云确也很有意义啊。 静人稀,沙子关好了门,气把六十四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野店荒林的威风。叹口气,用手指慢慢摸着凉滑的枪身,又微微笑,“不传!不传!”----老舍《断魂枪》
s****d 2018-07-11
亿元级云用户分析
比资源更难量化的概念,我只引把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的施和结项都是以结果为导向的,明确的程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。 资源持续--亿元大客户不要求云平台永不故障,但要云平台承诺清晰SLA,事后给合理的故障报告。 后记 如我在《复制阿里云并不难》所说的,云行业半IT界”,云行业将垄断IT界半的营收和利润。本文讨论的亿元大项目,目标就是拿下IT圈的营收上限。现在亿元大单都是云厂商在侵入系统集成商的势力范围,后面云厂商会得到越来越多的亿元大单。
小****园 2018-07-10
让PB级云存储不再神秘
3、大型用户谨慎选型 大型用户即使只存储1PB,每年也要花100多万了;型客户只要做选型,而大项目不仅要选型和定制,还有更多技术以外的东西要考量。 首先同样说价格问题,大型客户比客户更难办,客户是嫌价格贵,大客户却怕低价砸场。云存储不能违背商业的本质,甲方没蠢到敢让乙方赔钱做,但采购决策层更喜欢看谁的报价最低。数十PB的数据上云后基本下不来,平台方无论是提价还是降速,有的是追加预算的手段;如果对方是赔本卖吆喝,成功了就会甩开这包袱,失败了就直接倒闭。我谈PB级存储项目时,我很愿意分享不同底层技术带来的际成本构成,为什么同样的价格我们还能挣钱而友商已经在贴钱,相关内容会在第四章节详细说明。 成功案例是很重要的决策依据,但这依据很难考证性。厂商做PB级项目但其群TB项目做的计费融合,厂商确数百P的项目却和标准对象存储功能不通用,这类事情太多了,对象存储合同上不会有总容量,发票存根也只是简单的信息费。客户的成功案例必须是单命名空间容量达到PB级别,并简要说明文件数量和主要读写场景。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得匹。
若****客 2018-07-10
IT架构的本质--我的五点感悟
前言:架构师是无趣的工作 老僧三十年前未参禅时,见山是山,见水是水。 及至后来,亲见知识,有入出,见山不是山,见水不是水。 而今得休歇处,依前见山只是山,见水只是水。 参禅的三重境界在IT技术圈同样适用,初学者感叹每产品都如此精妙绝伦,追逐着最强的IDE;老司机喜欢自比管乐指点山,嘲讽着最好的语言;当切回归平淡,搞IT就是份思想延伸和语言翻译工作;其技术架构师就是份古朴甚至无趣的工作。 我将架构师的工作总结出五核心道理,这五经验简单直白又深奥通透,算是对我十二年IT工作的总结。 1. 需求优化最重要 少查少写少依赖,Less is more IT系统是多角色多模块分层分级的,像OSI模型上层应用简单依赖下层支撑,SOA设计同级角色也只看对方的接口。 各角色分工明确方便快速现业,但是给架构优化也埋下大坑,底层的盲目支撑是巨大资源浪费,平级调度协作也没任何弹性。前端逻辑需求会导致后端大规模联动,不同也没权限理解对方的内存数据,各角色的工程师都只看自己的工作范围,这是正常又无奈的现状。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
对于落是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的际损失更,甲方无法触及云厂商能倒腾出故障的部门。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业信誉。商誉分为企业商誉和人商誉,云厂商的企业商誉都积淀不足,胜者也是比烂大赛靠友商更烂胜出的,和IDC/CDN的比优大赛无法相提并论。大客户在吃够了厂商的亏以后,会选择信任能有人商誉,能做出承诺、调动资源和平复问题的销售和人员。 有客户非常信任某云销售,他告诉该销售,虽然某大云有高层合作,某大云也说报价肯定比某云低5%;但是某大云的机制有问题,出故障从来都是衙门话,每次故障都要客户去乱猜和背锅。最终这单子在客户执行层的暗助之下,该云快速把业来并坐站住了,这份暗相助就是靠人商誉带来的信任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。
追****圣 2018-07-11
给书记省长讲清楚云计算
云计算是商业,不仅需要硬性支持,还需要足够的环境和政策支持。当前云计算公司聚集在线大城市,环境规范稳定但成本极高竞争压力极大,云计算企业也在尝试向二三线转移突围。二三线城市不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线城市对互联网还只是简单的管控,稍有不解可能就会封禁大批互联网,但道封网命令就可以毁掉云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络保驾护航。 前几都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动上门寻求合作。从长周期来看云计算的客户是覆盖全球全行业的,各地内部采购的计算机项目根本不值提,市场和客户要靠云计算厂商自己去。但现在云计算厂商还在早期扩张摸索之,云厂商极端渴求各种政云企业云成功模式案例,旦摸出来案例会迅速推广到全国。
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维职位展望
2、进行云计算器维护;几大云供应商自己也要维护器,那些大型企业肯定会自己做私有云,在这云计算平台里也是需要运维人员进行从低端监控到高端架构的系列维护工作,但自动化运维技术会让运维人员的数量大大减少,可能每公司都只有团队了。 3、进传统行业继续做运维;笔者就是在通讯公司工作,我可以很乐观的说云计算会对公司造成有限的技术革新,比如说现OS的虚拟化。我们需要的SIP必须亲自搭建,阿里盛大新浪都没得卖,甚至因为硬件和网络限制让我们很难使用虚拟机;而外宣网站类的东西根本不是我们的核心竞争力,能用就好效率低些没关系。除了通讯公司之外,生产领域(比如管理生产线)也有类似的顾虑,云计算的优势和公司的业需求完全不沾边,所以这类公司的运维可能会是最后的运维。大家工作的时候都习惯网站相关的工作,但你学Web就定要网站工作是挺蠢的行为,危邦不入乱邦不居,最好不要涉足没有前途的行业。
M****H 2018-07-11
故障定位场景下的数据可视化
干货概览 百度拥有上百产品线,数十万的,每时时刻刻都在产生着海量的监控数据,形成的监控项规模总数已达数十亿。面对如此海量的数据,在日常运维(如故障诊断、成本分析、性能优化等场景),传统的统计图表难以有效直观地展示如此庞大的数据。因此,优秀的监控数据可视化产品就呼之欲出,他既要数据准确、全面、时效性高,也需要提升用户的使用体验,使其能在茫茫数据眼就能发现想要观察的数据。 那么怎么做才能适应用户需求、完成精准展示,同时又能挖掘数据价值呢?下面我们从故障诊断的场景出发,来看百度智能监控平台是如何充分利用数据可视化武器来解决际业问题的。 故障定位可视化思路 在标准的故障处理流程,故障定位般可分为两阶段: 故障止损前:期望可以快速获得可用于止损决策的信息,做出相应的止损操作使得恢复。比如通确定故障范围,调度流量绕故障机房或摘除故障例等。 故障止损后:仍需要进到导致故障的深层次原因,确定故障根因,将线上环境恢复到正常状态。
TOP