关于 党杭找服务上门按摩小妹 78792796-微V号武夷全套官窑n 的搜索结果,共1065
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 游有哪些,不同的游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
w****0 2018-07-11
单机房故障自愈-黎明之战
要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要保证变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固定IP或固定机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间无法进行快速的流量调度止损。 要求:线关联不允许使用固定IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。 单机房容灾能力--盲测验收 完成以四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本条件。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收亿的,但定个1000万的目标是能实现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了真理 3.4人力资源池 亿元项目不可能是客户自助实施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损千万。
M****H 2018-07-11
故障定位场景下的数据可视化实践
基于面的需求,可以总结为以下三个定位的层次,从整体到局部逐步缩故障范围,到故障根因: 局问题定位:快速确认线状态,缩故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建一个景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进一步缩问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:一些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如线变更、运营活动导致的故障。本文针对导致故障占比最高的变更线类故障进行分析,看如何快速到可能导致故障的变更事件。 景掌控缩范围 对于一个乃至一条产品线而言,拥有一个布局合理、信息丰富的景监控仪表盘(Dashboard)对于状态景掌控至关重要,因此在百度智能监控平台中,我们提供了一款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据信息。
M****点 2018-07-10
中国云计算现状——产品篇
最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没大规模对象存储搭建能力,而且对象存储对应用程序友好手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了TB的数据,大数据和AI分析应用自然就部署来了。广域网传输稳定性不够成本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展空间。 大数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,大数据PaaS都用成IaaS定制模板虚拟机了。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和安设备7x24时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、架、机架变更,直到设备下架、出库生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
TOP