关于 全套按摩服务薇78792796衢州衢江服务戚 的搜索结果,共416
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器上部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来局性影响。同时流量调度也无法使得恢复正常。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称上线)是运维领域最常见的业类型,主要涉及线上代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专门讨论过)。一般的业上线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由上线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键上线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次上线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭电信接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
前言 云计算是一种不仅要一次性验收其能力,还要持续关注其品质。客户用IaaS云就跟用IDC一样,用谁家的云就知道谁家有故障,用一家就知道一家的短处才是正常,只有前一个厂商烂到无可救药,客户才会对新厂商充满认可和感激。 本文的目的就是归类IaaS云故障的表层现象和深层原因,客户知道云的短板才好做系统设计,云厂商出故障也要老实认错,别总把客户当外行来糊弄。 至于PaaS云和IaaS云的设计实现思路完不同,不在本文讨论范围内。 客户的感知和建议 IaaS云的核心资源是云主机,其他IaaS资源都是依附于云主机的;云主机的可靠性略高于物理机,但并不是云主机永不宕机。 只要云主机采购量稍微上规模,云主机用户总会遇到一些故障。请谅解和忘记供应商的营销话述,云主机用户必须自己在架构设计层面规避这些故障。 网络抖动 现在云平台已经都用SDN组网,SDN本质是“软件定义网络”,其主打卖点是灵活管理和控制,其性能和稳定性并不是主打方向,SDN软件的质量也要略差与于传统厂商。云平台都会有网络IO超卖复用,而且用器CPU软解海量报文,其性能还是比传统网络略差的。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,用量付费可能会比资源付费更便宜(也可能更贵),而PaaS平台的恼人和诱人之处均在于产品形态很模糊、质量很难评估、很难独立运营、没有领头羊企业和事实标准。 PaaS云平台和IaaS云资源的区别就在于,平台需要理解客户的动作和状态。对象存储和CDN就是最典型的PaaS,云平台照数据容量、访问流量、访问次数和方法收费;Mysql RDS只能照内存和日志空间上限计费,但仍然可以替客户做数据库状态展示、分析和备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,小量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和安设备7x24小时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了上面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、上架、机架变更,直到设备下架、出库生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、上架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
s****d 2018-07-11
亿元级云用户分析
我们先列出来哪些资源是单体贩售能过亿的,云厂商把这些资源和其他的软件资源做打包混淆集中交付,云厂商就不是卖资源而是卖梦想了。 3.1 IaaS计算池 IaaS计算池,交付给客户的是CPU+内存+本地盘+本地网+IDC电力,产品形式可以是虚拟机、裸金属、容器,或者预装了数据库-大数据-队列等的模板化云主机,决定资源池成本的是硬件和电力的价格,以及内部浪费程度。销售铁三角对硬件资源池的包装,完成资源成本分析、交付展示和付款周期核算;在硬件资源池交付时,云厂商的优势长处是大规模交付和成本控制,至于短处么——家家有本难念的经。 3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的路和百万级销售类似,工作力度加大三五倍而已。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
如果你的团队运气好,遇到一个合适的产品经理,请容忍他短时间不出活,请容忍他拒了客户需求,请容忍他给研发添工作量,因为合格的产品经理要背负和团队负责人一样大的选型责任,他名字叫产品经理,但本质上是软件和设计师。
追****圣 2018-07-11
给书记省长讲清楚云计算
二三线城市不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线城市对互联网还只是简单的管控,稍有不解可能就会封禁一大批互联网,但一道封网命令就可以毁掉一个云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络保驾护航。 前几条都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动上门寻求合作。从长周期来看云计算的客户是覆盖行业的,各地内部采购的计算机项目根本不值一提,市场和客户要靠云计算厂商自己去找。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到国。这个窗口期只有三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 前文说的为何要引凤,如何算筑巢。
p****d 2018-07-11
单机房故障自愈--运维的春天
2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安水位线:流量处于在安线以下则风险较小,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。 如果安水位线提供的容量不足以满足止损,那我们期望使用上两条中间的容量buffer,同时流量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在流量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,实现故障的恢复。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定小于新时间t2,新时间t2也小于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
若****客 2018-07-10
IT架构的本质--我的五点感悟
我曾经接手三种生僻晦涩的业照本文的原理去拆解和规划,就没有什么特别难的。
TOP