关于 全套按摩服务薇78792796邵武下沙镇服务宦 的搜索结果,共538
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 游有哪些,不同的游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器上部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来局性影响。同时流量调度也无法使得恢复正常。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称上线)是运维领域最常见的业类型,主要涉及线上代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一,让数据自动生效》中专门讨论过)。一般的业上线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由上线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮,百度运维管理平台Noah发布了一键上线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次上线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
直接损失包括访问流量丢失、商业收入降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失包括用户信任度降、给竞品占领市场机会等。 单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景,运维人员通常选择7*24小时值班,接收大量的报警,随时准备在紧急情况进行响应、决策、操作一系列故障止损动作,尽量挽回损失,降低故障影响。 但上述解决方案会面临如问题: 响应可能不够迅速:例如夜间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理过程,并及时向运维人员同步故障处理状态。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,用量付费可能会比资源付费更便宜(也可能更贵),而PaaS平台的恼人和诱人之处均在于产品形态很模糊、质量很难评估、很难独立运营、没有领头羊企业和事实标准。 PaaS云平台和IaaS云资源的区别就在于,平台需要理解客户的动作和状态。对象存储和CDN就是最典型的PaaS,云平台照数据容量、访问流量、访问次数和方法收费;Mysql RDS只能照内存和日志空间上限计费,但仍然可以替客户做数据库状态展示、分析和备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,小量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在介绍NoahEE之前,有必要说一百度内部的统一自动化运维平台Noah。Noah来源于圣经中“诺亚方舟”的故事,我们用这个名字来寓意能够避免灾难,稳固而坚实的平台。作为一系列运维系统的集合,Noah包括了管理、机器管理、资源定位、监控报警、自动部署、任调度等等,已经了百度数年之久。我们推出的NoahEE(Noah Enterprise Edition)脱始于Noah,为企业提供了一站式运维解决方案,覆盖了包括日常的故障管理和变更管理中典型的运维场景,致力于为政企、金融、教育等行业提供业可用性保障、提升运维效率。 图1 NoahEE概览 接来,我们把这艘诺亚方舟分解开来,近距离观察一这艘船的方方面面。 管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台上各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几台甚至一台机器上,进行变更等运维操作简单直接,登录到机器上人工操作就好了。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
但是从云资源的管理、调度、监控软件,到客户界面,API管理、账户和后台策略层面,越往上走的软件质量还不如XXXX,此处省略一万五千字,客户自己揣吧。 厂商深层原因 厂商报故障就跟滚刀肉挨揍一样,脸疼了就把屁股凑过来,屁股疼了就捏捏脸,一般不会住一只羊使劲薅羊毛,毕竟云报障也要负载均衡。但客户自己心里要有秆秤,厂商究竟是偶尔发挥失常还是烂泥扶不上墙,故障的性质对长久的品质很重要。 我列一潜在的故障原因,哪些故障能忍,哪些故障不能忍,这些要云客户自己评估了。 技术原因 IaaS的核心主体功能(云主机、云硬盘、VPC),在没有特型要求前提,是可以用开源方案搭建。如果是云厂商连个开源平台标准模块都部署失败,那就该换厂商了;如果是偶发的BUG,那确实客户要自认倒霉,因为友商也会遇到同样问题。 现在容易出问题的是云平台的运营维护和云厂商的自定义管理模块,客户就是缺合格运维才被逼上的云平台,但云厂商自己也缺人;在软件BUG这一部分我已经吐槽过做云平台外延模块程序员的技能水平了。这些地方出了问题该投诉投诉、该索赔索赔,逼着客户去招更敬业专业的工程师。
s****d 2018-07-11
亿元级云用户分析
2.3 IT技术执行人 各类具体干活的工程师架构师,他们对上云的过程程参与,从自身立场品味着云项目的利害关系和云产品的使用感受。每个公司环境都不相同,他们可能强力推进项目,也可能暗地里阻塞实施,大部分情况是被动拖沓进度,但合理引导很容易积极配合。他们的诉求更简单直白: 操作的简便清晰不出错 建设和维护的劳累程度 云IT技能的个人稀缺含金量 云对旧有烂工作的解放 云对个人基础技能的替代 稳定故障清晰 汇报汇总展示方便 要想让IT技术执行人成为云厂商的好帮手,工程进度靠项目经理配合,资源协调靠销售配合,技术操作类诉求靠售前引导。 3.主体贩售资源分析 云供应商不可能靠软件和做到亿元销售额,只有以资源为载体,客户才会给到亿元大单。这个观点跟前文的“资源可以用做计收载体,但不能做为上云目的分析”并不是冲突而是印证。 以软件和做亿元营收载体,采购决策人会承担巨大决议风险;但平庸的贩售资源又会陷入价格战和关系战之中,云厂商追求市值和利润都不能讲这些老路了。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
个人产品经理是一个需要梦想和热情的职业,但在政企和工业级IT领域,能力比梦想更重要。 本文是想说清楚,政企和工业级软件领域,能力比梦想更重要,个人产品经理来到这个行业就会被秒成渣。如果一个企业要招产品经理,要知道这个行业有哪些难点痛点,需要什么样的产品经理(其实是软件和设计师)。 1. 需求拆解的能力 个人产品经理在设计一款APP时,是可以用生理上的主观感受给产品打分的。但是让一个产品经理来设计个流水线自控系统,他的主观感受并不重要,必须用技术和业能力将客户需求描述和引导。某些产品经理因为自己毫无感受憋不出词来,就把客户的要求当做圣旨跪拜,这不仅是吃里扒外,还是会搅黄项目的搅屎棍。 要拆解客户的需求,必须技术上能跟客户做平等对话,业上了解客户工作流程,还要理解大型客户内部的利害关系,不能靠“视察”客户会议室装专家上宾,也不能像外行一样凡事都跪问客户。 我举第一个例子是很多系统都有监控,监控系统的产品经理要完成列工作才合格: 技术:产品经理对“check tcp 80”和“check http 200”这类业术语没概念,需要客户被坑一次骂一次才能改一点点。
p****d 2018-07-11
单机房故障自愈--运维的春天
期望能够在不超过容量保护的情况进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安水位线:流量处于在安线以则风险较小,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。 如果安水位线提供的容量不足以满足止损,那我们期望使用上两条中间的容量buffer,同时流量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在流量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,实现故障的恢复。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
前言 子龙的镳局已改成客栈。东方的大梦没法子不醒了。----老舍《断魂枪》 云计算大潮到来了,我把IT技术像五虎断魂枪一样收起来了。我不会将它压到箱底,偶尔我也会练练聊聊,纪念一那个搞技术的黄金时代。 本文聊个很有嚼头的技术问题,Linux系统的启动过程,当我们不用自己安装系统以后,丧失了这么多乐趣。 正文 1.主板加电和硬件自检,就是开机第一屏启动界面。 CPU和内存插得有问题器会滴滴乱叫,而网卡和硬盘插不插都无所谓,因为这些外设都不属于经典的计算机系统。 早期小内存器一般有内存检测的功能,但256G内存的器启动的速度也太慢了,重启一分钟能启动的还能恢复,重启三分钟可能群集性状就变了,所以我们经常顺手就把他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板大都是BIOS引导,也有是UEFI引导,但从器用户看区别也不大。 主板可选从USB/SATA/NIC这几类接口上获取引导数据,而且可以排队式加载,第一个加载不成功就尝试第二个。系统安装镜像都有个防止误操作的倒计时,而网络引导一般是排在末位,硬盘引导就是通用的系统启动的方式。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
三、正确的时间是向量 Linux环境有两个常用工具,NTPD和ntpdate。NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定小于新时间t2,新时间t2也小于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。
追****圣 2018-07-11
给书记省长讲清楚云计算
本文包含如内容。 从大时代背景来看什么是云计算,云计算为什么会兴起。 云计算如何带动地方经济,这是个不需要物流就可以球的行业。 做云计算要满足哪些条件,如何才能筑巢引凤。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 云计算不是万能药,它无法解决哪些问题。 什么是云计算 近20年来,互联网引爆了球的信息技术革命,我国借助这次技术革命的大好机会,已经追上乃至领跑此次技术革命。 互联网技术深刻的改变着我们的生活,其行业生态也在逐步分化扩大,这一现状客观促进了云计算技术的发展。 上世纪80年代,计算机仅应用于科研等少数行业,国计算机从业人员不超过万人,从业人员大都有很深的学术背景。 上世纪90年代,门户、论坛、邮件系统开始影响部分群众的生活,国内从业人员约为十万人,可以分为软件和硬件两类工程师。 进入2000年,无纸化办公、游戏、社交、电商改变了大众的生活的方式,国内从业人员已经远超百万,技术分类有数十种工程师。
布****五 2018-07-10
如何执行一条命令
如何解决 为了解决这个简单的难题,我们设计了如图3所示的百度集群控制系统(Cluster Control System,简称CCS系统),通过分离控制信息与执行信息建立了两级数据模型,结合命令执行及机房部署特点建立了四级传输模型,通过三级守护方式建立了稳定的执行代理,在大规模器集群上解决了“命令三要素”问题。 图3百度集群控制系统架构 截至目前,CCS系统已经部署在百度的所有机房中,用户可以方便的在任意一台机器上进行秒级命令发和结果收集,日均承载数亿次来自各产品的接口调用。关于数据模型、传输模型、执行代理这“分布式命令三要素”的设计及应用,我们将在一篇文章中详细介绍。
M****H 2018-07-11
故障定位场景的数据可视化实践
基于上面的需求,可以总结为以三个定位的层次,从整体到局部逐步缩小故障范围,找到故障根因: 局问题定位:快速确认线上状态,缩小故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建一个景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进一步缩小问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:一些情况,问题的根因需要借助除监控指标之外的数据进行分析。例如上线变更、运营活动导致的故障。本文针对导致故障占比最高的变更上线类故障进行分析,看如何快速找到可能导致故障的变更事件。 景掌控缩小范围 对于一个乃至一条产品线而言,拥有一个布局合理、信息丰富的景监控仪表盘(Dashboard)对于状态景掌控至关重要,因此在百度智能监控平台中,我们提供了一款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据信息。
TOP