关于 全套服务大冶找妹子上门41435693】aya 的搜索结果,共1193
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 游有哪些,不同的游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
追****圣 2018-07-11
给书记省长讲清楚云计算
人不仅要住房还可以盖房,不仅会逛超市也会开菜市场。 政府和型国企不仅能采购云计算,早晚也会走向发展云计算的路。 本文不谈任何技术细节和商业情怀,而是从政企的角度说明什么是云计算。 本文包含如下内容。 从时代背景来看什么是云计算,云计算为什么会兴起。 云计算如何带动地方经济,这是个不需要物流就可以球的行业。 做云计算要满足哪些条件,如何才能筑巢引凤。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 云计算不是万能药,它无法解决哪些问题。 什么是云计算 近20年来,互联网引爆了球的信息技术革命,我国借助这次技术革命的好机会,已经追乃至领跑此次技术革命。 互联网技术深刻的改变着我们的生活,其行业生态也在逐步分化扩,这一现状客观促进了云计算技术的发展。 世纪80年代,计算机仅应用于科研等少数行业,国计算机从业人员不超过万人,从业人员都有很深的学术背景。 世纪90年代,户、论坛、邮件系统开始影响部分群众的生活,国内从业人员约为十万人,可以分为软件和硬件两类工程师。
s****d 2018-07-11
亿元级云用户分析
1.云目的分析 型云用户云的宏观目的和普通用户类似,但多角色多部的利益诉求非常复杂。 降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和合同。 明确责任:客户不想承担各个IT系统的衔接和选型责任,相比软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:云本身并不碰业数据,但云是很好明确业数据存储位置的机会,云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居安思危,在困境危难之中穷极思变,IT技术是企业的潜在增长点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为云目的分析。亿元以器、CDN的订单很多但既无技巧也无利润,这些资源厂商也在跟云厂商学习如何包装项目。 2.客户角色利益分析 企业多角色之间的利益诉求不同,所以表现形式也不同。我将客户三角色列出来讨论,销售-售前-项目经理铁三角组合明确客户的诉求,才更好游刃有余的客户。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例。这个例中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极的简化了运维操作,提升了运维效率。
w****0 2018-07-11
单机房故障自愈-黎明之战
要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要保证变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固定IP或固定机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间无法进行快速的流量调度止损。 要求:线关联不允许使用固定IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。 单机房容灾能力--盲测验收 完成以四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本条件。
j****2 2018-07-10
百度脑开放日来袭 24种新AI能力呈现
人工智能连续3年进入政府报告、“智能+”成为时代新命题,这些信息都显示2019年会是AI产业面加速落地的一年。AI行业的发展,离不开千万开发者的助力。 3月20日,首场百度脑开放日新登场,介绍了新开放的24种新AI能力,AI赋能市政、物流、教育等行业的20个案例,也为向开发者、行业人士展现了如何搭AI开放生态的高速列车。 百度脑开放日来袭 作为百度在人工智能领域多年研究成果的集成者,百度脑正在飞速进步着。自2016年启动开放以来,百度脑目前已经是规模最的AI开放平台,开放了158项AI能力,24小时快速集成,开发者数量超过100万,面向广泛的企业和开发者提供最先进、最面的AI能力,不断降低AI应用落地的槛。 百度AI技术生态部总经理喻友平谈到,“在百度脑的开放生态中,开发者一直是最为重要的一环。百度脑开放能力不断加速,有很多有价值的技术难以被开发者了解。2019年百度脑开放日新登场,希望为AI开发者提供及时、面、近距离地了解百度脑最新AI产品和案例,且能深度、持续交流的平台。”
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维职位展望
家都知道黑云压城也该未雨绸缪了,如果你已经是个运维老鸟或者很快就投身运维工作,我建议家往这几个方向动动脑: 1、企业采用公有云方案后,仍然需要一个懂行的人解决公有云平台的监控、评估、采购、报修这类问题。但这个职位应该一个公司公司只需要一个人,且再等十年云计算彻底标准化后还会再次消失。当然了,我相信能胜任这个岗位的人,在云计算已经规范到不需要专人维护的时候,他们也会有能力到更合适的岗位。 2、进行云计算器维护;几供应商自己也要维护器,那些中型企业肯定会自己做私有云,在这个云计算平台里也是需要运维人员进行从低端监控到高端架构的一系列维护工作,但自动化运维技术会让运维人员的数量减少,可能每个公司都只有一两个小团队了。 3、进传统行业继续做运维;笔者就是在一个通讯公司工作,我可以很乐观的说云计算会对公司造成有限的技术革新,比如说实现OS的虚拟化。我们需要的SIP必须亲自搭建,阿里盛新浪都没得卖,甚至因为硬件和网络限制让我们很难使用虚拟机;而外宣网站一类的东西根本不是我们的核心竞争力,能用就好效率低一些没关系。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
干货概览 在型互联网公司中,单机房故障因为其故障时间长、影响范围,一直是互联网公司运维人员的心头之痛。在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各互联网公司被披露的故障事件,单机房故障层出不穷。
无****禾 2018-07-11
云客户需求引导管理--实战型IT太极拳
云平台卖的都是,靠销售体系打下单来只是万里长征第一步。如果云厂商做不好,公有云没有消费额,私有云可以换别人家的软件授权;如果云厂商做好客户的技术,完可以从备胎公有云变为主力公有云,私有云群集也月月有扩容。各位投标中标的CDN厂商已经领教过客户的切量神功了,而云主机等资源的切换也会越来越简单方便。 过去的案例 我们先看四个生产环境案例。 案例1.有外售型私有云客户要把虚拟机的内网带宽从1G扩充到4G,沟通后发现是最终用户要在单虚拟机流量应用。我就劝客户技术工程师,网卡改QoS不难,但宿主机网卡才10G,你们是愿意一台物理机只跑两台虚拟机,还是愿意停机扩容物理网卡。客户技术工程师认同让最终用户学采用LB加多台虚拟机,比改QoS和停机加网卡更可靠。但最终用户宁愿纠缠客户技术人员也懒得学如何用LB,我给支招说我们的操作人日免费送,但硬件改造成本有20万,问这用户只是想试试还是改完网卡就能付费。最后该用户果然只是想试试,我们和客户技术部都躲过一场折腾。 案例2.有个IDC新线一外售型私有云,运营负责人第一次操盘公有云心里痒痒,总是提需求但总被我拒绝。
嘟****y 2018-07-11
型企业适用的云平台账户体系
第二.账户内资源隔离 企业客户尽量会将资源集中采购,在采购IDC/CDN这类简单时不用担心资源混淆。但用过去管理虚拟机的经验,管理IaaS和PaaS时要有资源池隔离,不同部和项目的主机资源要分别计费和管理。 一个很常见的场景是,人事部的OA系统申请了15万云主机费用,生产车间的ERP和销售部的CRM系统不设限,外部客户A项目预算是50万,B项目是200万,等等等等。 如果没有资源池的概念,就是一个账户管所有资源的“通铺”模式,客户要把脚趾头都掰完了才能算清各项目的消费金额;万一云平台调整了资源价格,较真的客户又要从头重算一次。 这个“通铺”最尴尬的不是计费繁琐,而是一个账户下所有资源毫无权限隔离,客户或者只有一个人去登录云平台,或者将不同业注册完孤立的账户。互联网公司无法理解传统企业和自然人有关的流程是多沉重,客户选一个云平台管理员完成所有操作,客户的项目越多管理员员就越晕越累。将不同业区分为不同账户也解决不了问题,因为客户和云平台都要将这批账户统一管理,但实际扣费进度总会超出意外,项目欠费停机或者追加预算,挨骂受累的都是平台管理员。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定小于新时间t2,新时间t2也小于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
M****点 2018-07-10
中国云计算现状——产品篇
最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,小量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没规模对象存储搭建能力,而且对象存储对应用程序友好手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了TB的数据,数据和AI分析应用自然就部署来了。广域网传输稳定性不够成本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展空间。 数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,数据PaaS都用成IaaS定制模板虚拟机了。
M****H 2018-07-11
故障定位场景下的数据可视化实践
基于面的需求,可以总结为以下三个定位的层次,从整体到局部逐步缩小故障范围,到故障根因: 局问题定位:快速确认线状态,缩小故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建一个景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进一步缩小问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:一些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如线变更、运营活动导致的故障。本文针对导致故障占比最高的变更线类故障进行分析,看如何快速到可能导致故障的变更事件。 景掌控缩小范围 对于一个乃至一条产品线而言,拥有一个布局合理、信息丰富的景监控仪表盘(Dashboard)对于状态景掌控至关重要,因此在百度智能监控平台中,我们提供了一款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据信息。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
前言 沙龙的镳局已改成客栈。东方的梦没法不醒了。----老舍《断魂枪》 云计算潮到来了,我把IT技术像五虎断魂枪一样收起来了。我不会将它压到箱底,偶尔我也会练练聊聊,纪念一下那个搞技术的黄金时代。 本文聊个很有嚼头的技术问题,Linux系统的启动过程,当我们不用自己安装系统以后,丧失了这么多乐趣。 正文 1.主板加电和硬件自检,就是开机第一屏启动界面。 CPU和内存插得有问题器会滴滴乱叫,而网卡和硬盘插不插都无所谓,因为这些外设都不属于经典的计算机系统。 早期小内存器一般有内存检测的功能,但256G内存的器启动的速度也太慢了,重启一分钟能启动的还能恢复,重启三分钟可能群集性状就变了,所以我们经常顺手就把他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板都是BIOS引导,也有是UEFI引导,但从器用户看区别也不。 主板可选从USB/SATA/NIC这几类接口获取引导数据,而且可以排队式加载,第一个加载不成功就尝试第二个。系统安装镜像都有个防止误操作的倒计时,而网络引导一般是排在末位,硬盘引导就是通用的系统启动的方式。
TOP