关于 全套服务明水找妹子上门43501393】oug 的搜索结果,共1017
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流线作业中,Archer可以作为一个环节结合进整条测试发布流线中。
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示一个的实例集合,一般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯一的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景一:我是一名OP工程师,负责几十个系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那么多部署信息,怎么办? 场景二:我是一名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容怎么通知给下游模块? 场景三:我的部署实例有一个出现故障了,我想对下游屏蔽该故障实例,怎么办? 下面以一个简单的例来说,假设一个模块名是Server,它的游是Proxy,下游是Redis,当出现变更或者故障时,如何让游感知到呢? 当新增线实例、下线摘除实例或者实例发生故障时,BNS系统通过部署在机器的客户端实时感知到实例的状态变化,同时新增和删除实例的变更情况会立即同步到分布式的缓存系统中,这样用户通过一个BNS名字就可以感知到下游的实例变化。
s****d 2018-07-11
亿元级云用户分析
1.云目的分析 大型云用户云的宏观目的和普通用户类似,但多角色多部的利益诉求非常复杂。 降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和合同。 确责任:客户不想承担各个IT系统的衔接和选型责任,相比软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:云本身并不碰业数据,但云是很好确业数据存储位置的机会,云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居安思危,在困境危难之中穷极思变,IT技术是企业的潜在增长点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为云目的分析。亿元以器、CDN的订单很多但既无技巧也无利润,这些资源厂商也在跟云厂商学习如何包装项目。 2.客户角色利益分析 大企业多角色之间的利益诉求不同,所以表现形式也不同。我将客户三大角色列出来讨论,销售-售前-项目经理铁三角组合确客户的诉求,才更好游刃有余的客户。
流****水 2018-07-11
度云企业级运维平台——NoahEE
对于产品研发的同学来说,关注点是语义确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在哪里。在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例。这个例中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。
w****0 2018-07-11
单机房故障自愈-黎之战
要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要保证变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固定IP或固定机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间无法进行快速的流量调度止损。 要求:线关联不允许使用固定IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。 单机房容灾能力--盲测验收 完成以四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本条件。
追****圣 2018-07-11
给书记省长讲清楚云计算
前几条都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动寻求合作。从长周期来看云计算的客户是覆盖行业的,各地内部采购的计算机项目根本不值一提,市场和客户要靠云计算厂商自己去。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到国。这个窗口期只有三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 前文说的为何要引凤,如何算筑巢。当云厂商看到商机肯合作时,我们要掌握各类云厂商的特点才能心里有数。 第一类是大型云厂商,他们自身有很强的资源整合能力和执行销售能力。地方政企和这类企业合作的话语权很弱,但极小风险就能看到收益。 第二类是创业云厂商,他们一般是靠技术优势和态度从大型云企手里抢单。地方政企和这类企业合作时有很强的议价能力,注意不要盲目倾向技术优先的创业云厂商,而是选择态度和执行能力好的创业云厂商。地方政企很难确切搞懂厂商的技术有哪些优势,而项目的推进落地都是要靠云厂商来执行的。
p****d 2018-07-11
单机房故障自愈--运维的春天
【解决方案】 基于容量位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安位线:流量处于在安线以下则风险较小,可以一步进行切换。 限:该位线表的最大承载能力,一旦流量超过故障位线,很大概率会导致容量过载。 如果安位线提供的容量不足以满足止损,那我们期望使用两条中间的容量buffer,同时流量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在流量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,实现故障的恢复。 2业线止损策略需求差异大 【问题描述】 我们实现了基础的单机房故障流量调度止损算法,但在部分业线中仍存在较大的需求差异,比如: 分步动态调度需求:业存在充Cache的情况,过程中能力降低,需要控制切换速度。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
附录2:网到一个写NTPD和ntpdate的文和本文内容有些类似,那个是我多年以前写的,不是借鉴和抄袭,严肃脸。
M****点 2018-07-10
中国云计算现状——产品篇
前言 篇文章《中国云计算现状——成本篇》(特大号首发改名为《做好云计算要花多少钱》)讲的是成本问题,即什么企业有可能能做云计算。本文是第二篇产品篇,目标客户是云计算产品经理和云计算标准用户。我从一个老用户的角度谈谈每种云计算产品该如何使用,哪些产品改进是刚需放心吐槽,哪些产品有内因就是改不了。本文主要说用云产品的问题,买云产品的问题在采购篇单聊。 正文 现在是2017年,云计算是物理硬件的优质替代方案,客户很认可云计算极低的采购和交付成本优势。这时候我们要少被企宣PPT洗脑,追求华而不实的远景,这些PR文章的受众是风险投资、客户决策层和创业者。我们应该摸清楚云方案和硬件方案比有什么特点和局限性,客户白特点才能使用得心应手,客户白局限性才会早作备用方案,产品经理心里不慌才会关注核心功能。 一、IaaS产品 IaaS平台的本质是,产品以做硬件资源的虚拟化为本,业承接物理硬件替代需求,其优势是最快速度最低成本交付,客户为预占的物理资源付费。IaaS产品是最经典的云计算,核心组件是云主机,如虚拟网络、云硬盘和安组都是为支撑云主机业的。
无****禾 2018-07-11
云客户需求引导管理--实战型IT太极拳
云平台卖的都是,靠销售体系打下单来只是万里长征第一步。如果云厂商做不好,公有云没有消费额,私有云可以换别人家的软件授权;如果云厂商做好大客户的技术,完可以从备胎公有云变为主力公有云,私有云群集也月月有扩容。各位投标中标的CDN厂商已经领教过客户的切量神功了,而云主机等资源的切换也会越来越简单方便。 过去的案例 我们先看四个生产环境案例。 案例1.有外售型私有云客户要把虚拟机的内网带宽从1G扩充到4G,沟通后发现是最终用户要在单虚拟机跑大流量应用。我就劝客户技术工程师,网卡改QoS不难,但宿主机网卡才10G,你们是愿意一台物理机只跑两台虚拟机,还是愿意停机扩容物理网卡。客户技术工程师认同让最终用户学采用LB加多台虚拟机,比改QoS和停机加网卡更可靠。但最终用户宁愿纠缠客户技术人员也懒得学如何用LB,我给支招说我们的操作人日免费送,但硬件改造成本有20万,问这用户只是想试试还是改完网卡就能付费。最后该用户果然只是想试试,我们和客户技术部都躲过一场折腾。 案例2.有个IDC新线一外售型私有云,运营负责人第一次操盘公有云心里痒痒,总是提需求但总被我拒绝。
M****H 2018-07-11
故障定位场景下的数据可视化实践
多个维度关联分析 细分维度的故障所带来的表象可能会在多个维度均有表现,比如整体的访问拒绝升,我们会发现分机房的拒绝量升,也看到分模块的拒绝升。那么我们如何确认故障的根因是来源于某个机房还是某个模块,还是这两者的交叉维度,即某个机房的某个模块导致的问题。 矩阵热力图可以解决这一问题。将需要做分析的两个维度分别作为横纵坐标,通过阶梯的阈值颜色将对应交叉维度的取值展现再坐标。我们便可非常直观的看到这这两个维度对于整个业的影响情况,如下图所示: 我们可以看到,从纵向的分模块维度,可以看到Module 4在多个机房都有显的访问拒绝情况,而在横向分机房维度,则没有显的特征。则说是Module 4模块导致的问题。 嵌维度下钻分析 类似于国家-省份-城市的行政区域划分,区域-机房-机器的部署划分,我们可以看到很多维度之间存在着层次嵌的关系。我们故障定位的思路也是如此,从整体到局部逐步分层下钻定位。 我们提供了多维度展开报表功能支持这种下钻分析。
若****客 2018-07-10
IT架构的本质--我的五点感悟
2.群集设计通用规则 前端复制后端拆,实时改异步,三组件互换 前端复制后端拆,实时改异步,IO-算力-空间可互换——要做架构就要群集,而群集设计调优翻来覆去就是这三板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做平复制扩容,在网站类应用,无状态-会话保持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散微操作就越爽,但局操作开销更大更难控制。 实时改异步是我学的最后一IT技术,绝大部分“实时操作”都不是业需求,而是某应用无法看到后端和Peer状态,默认就要实时处理结果了。CS模式的实时操作会给支撑带来巨大压力,Peer合作的实时操作可能会让数据申请方等一宿。架构师将一个无脑大事拆分成多个小事,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的小事需要更高业层级局事保障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。
TOP