关于 兰州刘家堡找妹子上门按摩保健服务【微85516654】无定金 的搜索结果,共1150
h****e 2018-07-10
程序:我从哪里来?
Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器的Check Agent会主动探测所有实例的运行状况,并将康检查的结果报给Cache层,同时更新数据库内容。 总结 BNS系统满足间交互中常见的的资源位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从哪里来?该往哪里去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎大积极留言。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为托管平台的底层工具链,为PaaS平台提供稳的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线故障; 业的多地域部署; 多种网络环境及大包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合面场景,向大介绍百度持续部署是如何实现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行实际任。涉及大包及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱章又不规范的代码及配置文件的目录结构,Archer规了一套既灵活又完整的包规范。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目信任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自义SLA标准——大部分API云连等待超时都没义。 版本发布和数字化转型——论是观的版本发布还是宏观的数字化转型,其实都和云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大主,云厂商的下限是类比传统IDC,要把主伺候舒了就要学IOE类集成商。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
我们很难成功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背黑锅了。 真有TOP10的互联网公司和亿国级项目里用ntpdate+crond,一代架构师为什么有这个误会人深究,下一代人将误会固化为偏见,新一代人将偏见神化为迷信。 但论误会、偏见还是迷信,时间跃变、回退和停滞对应用壮性和业安全性的威胁始终存在,时间不仅仅是我玩游戏时用的魔法,忽视问题并不能掩埋问题。 六、见知著和防杜渐 我讲NTPD和裸纤并不是为卖弄知识,也不是为做偏科普,而是希望进阶工程师们多考虑一下如何规避这类误会?我们在做技术工作时,是不是只关注客户和同事能提出的需求?客户永远不知道裸纤的物理特性,同事也不会知道时间也能错误和波动,他们能说清楚业逻辑就不错了。 把所有的精力都用到做业逻辑,你只是个编程语言翻译机而已;自己主动观测技术环境依赖,有资格有能力做出技术选型决策,才是给Coder群集做技术校准的人。即使你不想做技术决策人和管理者,多怀疑和观察环境,也能少些沟通成本,少走一些冤枉路,多一份自信和自尊。
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固IP或固机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间法进行快速的流量调度止损。 要求:线关联不允许使用固IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到一程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例。这个例中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
双****4 2018-07-11
【杂谈】猎场没那么精彩--还原真实的猎头
大部分猎头公司也所谓简历库,特别是互联网行业更为明显。高端猎头是要钓大鱼的,但钓鱼先要等鱼长大,中国企业都兴起没几年,还没有稳的高管和高工群体,同城同行业挖来挖去就那几个熟人;而那些新手猎头三个月不开锅就要饿死,撒网甚至炸鱼的收益会更底一些。从长周期来看,猎头属于利用信息不对称来牟利的行业,互联网技术本来就是要消除信息不对称。现在有跳槽意向的普通员工会在招聘网站更新简历,中高层会主动布局等待候选单位钩,专单一猎头更新简历库的互联网人才越来越少了。 在甲方来看,个猎头公司签个合作协议是很随意的,这些猎头谁做成单了才给钱,做不成也没损失,甲方还能享受一呼百应蜂拥而的快感。但天下没有免费午餐,免费供应的简历质量障,耽误的人力和时间都法衡量。滥用猎头还会增大不必要支出,中下级岗位人事自己也能搜到简历,而很多初级猎头就做佣几千块的小单。 如果甲方要精英猎头,先要确认该岗位是否值得去专业人才;当甲方觉得能付出十万块钱的佣是值得的,好甲方就能到好供应商;如果招聘方把几千块佣当做传宝贝,给猎头花这个钱还不如给面试者报销打车费。
若****客 2018-07-10
IT架构的本质--我的五点感悟
2.群集设计通用规则 前端复制后端拆,实时改异步,三组件互换 前端复制后端拆,实时改异步,IO-算力-空间可互换——要做架构就要群集,而群集设计调优翻来覆去就是这三板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做水平复制扩容,在网站类应用状态-会话持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散操作就越爽,但全局操作开销更大更难控制。 实时改异步是我学的最后一IT技术,绝大部分“实时操作”都不是业需求,而是某应用法看到后端和Peer状态,默认就要实时处理结果了。CS模式的实时操作会给支撑带来巨大压力,Peer合作的实时操作可能会让数据申请方等一宿。架构师将一个脑大事拆分成多个小事,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的小事需要更高业层级做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。
追****圣 2018-07-11
给书记省长讲清楚云计算
进入2000年,纸化办公、游戏、社交、电商改变了大众的生活的方式,国内从业人员已经远超百万,技术分类有数十种工程师。 在最近的十年,移动互联网兴起,便捷的通信、打车、外卖、电支付等功能层出不穷,所有面向个人消费者的行业都在加速互联网化;未来十年里,计算机技术将深刻影响工业生产领域。这时问题出现了,我们需要千万名工程师吗,我们有这么多工程师吗? 历史总是惊人相似的轮回,在国决策层面,云计算是个可以和能源、融相提并论的领域。 第一次工业革命开始时,每一个矿山都安装各自的蒸汽机;第二次工业革命开始时,每一个工厂都要重点解决电力等能源问题;信息技术革命开始时每个公司都要有计算机工程师。但百川终到海,发动机能统一标准,电力能源能集中供应,云计算平台可以实现计算机技术的标准化,凭借规模效应降低成本,让客户直接付费购买信息技术,极大减少了客户的人力投入以及衍生的时间和管理成本。 信息技术革命的核心工作是信息的存储和处理,最重要的资源是数据。
布****五 2018-07-10
如何执行一条命令
可是如果要在几十万台机器每天执行几十亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24小时稳运行,就不是一件简单的事情了。所谓远行轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
M****点 2018-07-10
中国云计算现状——产品篇
有读者怪我认识浅薄,但是云内资源调度都做不好的用户,怎么能做好跨云的资源调度。 既然谈到了混合云,肯就要谈云管平台,云管平台不是伪需求而是新需求。当客户的非CDN云资源采购额过500万以后,其项目之间没有内网互通的需求,这时候该做一个跨厂商的云端资源管理方案了。现在虚拟机不能像CDN一样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平台从计费和权限层面做好,至少在项目级别可以和多个厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和实施 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和实施可以让公司增加企业的融资概念和收入构成。中小型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴说不要眼神也很诚实。但具体参与过程中,这类工作很少有成功案例,我做成功过这类项目感慨也很深,本段落重点解释这些现象并给出建议。 先说IT咨询,过去云计算平台吸引到的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为一小时一千元的咨询付费。
小****君 2018-07-11
踏云落地--谈IT就业趋势
3.公版云在细节打磨,肯没有精英制支撑平台那么精细贴切,但对于新公司新项目来说,一个能跑起来的系统就够用了。很多技术精英也觉得打磨个小系统太累,图省事就买云凑合用了。4.要做好后台支撑并不只依靠精英们埋头苦干,巧妇难为米之炊。云厂商有集采优势,云厂商多给点资源就能省下很多优化工作;部分情况云厂商还有数据优势,比如基于本站数据做风控需要反复调试,而对接云厂商外部参考画像会简单很多。5.技术大牛都是让变态业需求给压出来的,如果公司有技术大牛,那各种需求就来了,但如果没有技术大牛,公司也会压缩自己的IT难度。比如搞大促秒杀就要准备2000万云费,业就会掂量成本。客户要使用PaaS云就要照云厂商的是数据和业的格式约。我们看到越来越多的证据,有了对象存储就不用招存储工程师,有了鉴黄和人脸识别就不用自己推演模型,有是反作弊系统就不用自己研究刷单,有了IM就不用自己做openfire。真正的行业精英是不会护食眼前这碗饭,到问题最优解比住铁饭碗重要的多。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
前言 云计算是一种不仅要一次性验收其能力,还要持续关注其品质。客户用IaaS云就跟用IDC一样,用谁的云就知道谁有故障,用一就知道一的短处才是正常,只有前一个厂商烂到可救药,客户才会对新厂商充满认可和感激。 本文的目的就是归类IaaS云故障的表层现象和深层原因,客户知道云的短板才好做系统设计,云厂商出故障也要老实认错,别总把客户当外行来糊弄。 至于PaaS云和IaaS云的设计实现思路完全不同,不在本文讨论范围内。 客户的感知和建议 IaaS云的核心资源是云主机,其他IaaS资源都是依附于云主机的;云主机的可靠性略高于物理机,但并不是云主机永不宕机。 只要云主机采购量稍规模,云主机用户总会遇到一些故障。请谅解和忘记供应商的营销话述,云主机用户必须自己在架构设计层面规避这些故障。 网络抖动 现在云平台已经都用SDN组网,SDN本质是“软件义网络”,其主打卖点是灵活管理和控制,其性能和稳性并不是主打方向,SDN软件的质量也要略差与于传统厂商。云平台都会有网络IO超卖复用,而且用器CPU软解海量报文,其性能还是比传统网络略差的。
TOP