关于 兼职少妇包夜全套服务十薇v信78792796沁县服务扈 的搜索结果,共652
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些括:在机器上部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了一个名到资源息的一个映射关系。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
直接损失括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失括用户任度下降、给竞品占领市场机会等。 单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景下,运维人员通常选择7*24小时值班,接收大量的报警,随时准备在紧急情况下进行响应、决策、操作一系列故障止损动作,尽量挽回损失,降低故障影响。 但上述解决方案会面临如下问题: 响应可能不够迅速:例如间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景下,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理过程,并及时向运维人员同步故障处理状态。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为上层托管平台的底层工具链,为PaaS平台提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线上故障; 业的多地域部署; 多种网络环境及大部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合上面场景,向大家介绍百度持续部署是如何实现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行实际任。涉及大及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一既灵活又完整的规范。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来局性影响。同时流量调度也无法使得恢复正常。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和安设备7x24小时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了上面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、上架、机架变更,直到设备下架、出库生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、上架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
追****圣 2018-07-11
给书记省长讲清楚云计算
本文含如下内容。 从大时代背景来看什么是云计算,云计算为什么会兴起。 云计算如何带动地方经济,这是个不需要物流就可以球的行业。 做云计算要满足哪些条件,如何才能筑巢引凤。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 云计算不是万能药,它无法解决哪些问题。 什么是云计算 近20年来,互联网引爆了球的息技术革命,我国借助这次技术革命的大好机会,已经追上乃至领跑此次技术革命。 互联网技术深刻的改变着我们的生活,其行业生态也在逐步分化扩大,这一现状客观促进了云计算技术的发展。 上世纪80年代,计算机仅应用于科研等数行业,国计算机从业人员不超过万人,从业人员大都有很深的学术背景。 上世纪90年代,门户、论坛、邮件系统开始影响部分群众的生活,国内从业人员约为万人,可以分为软件和硬件两类工程师。 进入2000年,无纸化办公、游戏、社交、电商改变了大众的生活的方式,国内从业人员已经远超百万,按技术分类有数种工程师。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定小于新时间t2,新时间t2也小于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
M****点 2018-07-10
中国云计算现状——产品篇
Serverless的实之处在于要求程序为自己进行改造,其他强调按需付费的计算只是快速释放资源的小把戏,Serverless才是真正的计算能力集装箱,未来计算场景下的CDN。 三、SaaS产品 其实SaaS产品和狭义的云计算没一毛钱关系,广义的云计算连设备租赁和人员外都能算进去吹水框架,自然也给SaaS云预留了位置。 SaaS产品已经出现并流行了几二年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是比各位读者从业年龄还长的老古董,最新流行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用上云走公网和之前走内网区别并不大,用物理机和虚拟机区别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这一点来看,这些SaaS只是云平台的普通用户,和游戏、网站、APP、没有区别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。
s****d 2018-07-11
亿元级云用户分析
我们先列出来哪些资源是单体贩售能过亿的,云厂商把这些资源和其他的软件资源做打混淆集中交付,云厂商就不是卖资源而是卖梦想了。 3.1 IaaS计算池 IaaS计算池,交付给客户的是CPU+内存+本地盘+本地网+IDC电力,产品形式可以是虚拟机、裸金属、容器,或者预装了数据库-大数据-队列等的模板化云主机,决定资源池成本的是硬件和电力的价格,以及内部浪费程度。销售铁三角对硬件资源池的装,完成资源成本分析、交付展示和付款周期核算;在硬件资源池交付时,云厂商的优势长处是大规模交付和成本控制,至于短处么——家家有本难念的经。 3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的路和百万级销售类似,工作力度加大三五倍而已。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业誉。商誉分为企业商誉和个人商誉,云厂商的企业商誉都积淀不足,胜者也是比烂大赛中靠友商更烂胜出的,和IDC/CDN的比优大赛无法相提并论。大客户在吃够了厂商的亏以后,会选择任能有个人商誉,能做出承诺、调动资源和平复问题的销售和人员。 有个客户非常任某个小云销售,他告诉该销售,虽然某大云有高层合作,某大云也说报价肯定比某小云低5%;但是某大云的机制有问题,出故障从来都是衙门话,每次故障都要客户去乱猜和背锅。最终这个单子在客户执行层的暗助之下,该小云快速把业切过来并坐实站住了,这份暗中相助就是靠个人商誉带来的任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。面对意外故障,我们有心向客户证明,换了其他厂商也一样会挂;面对人为故障,踏实认错是对客户的最后尊重,而公开事实也是逼着内部不会重蹈覆辙犯同样的错误。
布****五 2018-07-10
如何执行一条命令
可是如果要在几万台机器上每天执行几亿条命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24小时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
小****园 2018-07-10
让PB级云存储不再神秘
ToB业涉及人员请注意一下,带宽和存储已经都降价了,连带着大数据和AI技术都在进步,以前不敢想的业场景可以去实践了。比如高清企业视频会议和无人机航拍后人工智能做设备点检,还有一呼之欲出的IOT方案,这都是在促进生产力的进步。 近几年自然数据的产生和处理能力急剧提升,PB存储俱乐部里也有了一批高科技新玩家,我们愿意帮着他们改变世界。比如医疗息化整改,一个区域的所有PX影像要集中存年以上,而且随着医疗器械的更新换代,这些影像数据会越来越大。以前我们拍个CT片子是横着切5片,一个胶片20MB,现在我们拍个CT是纵切30片,一个胶片是200M。比如基因测序,每家基因公司都立志将人类的基因记录一遍,录完人类的还有其他生物可以搞。比如气象和地质活动,现在有了更新的监测手段、更密集的监测网点,数据记录量也翻倍增加。这类方案对存储要求长周期平滑扩容,云厂商的对象存储会是这类客户的最佳方案。 4、变通和妥协 对象存储并不是万能解决方案,它有解决不了的问题,也愿意为适应现状做容和妥协。
若****客 2018-07-10
IT架构的本质--我的五点感悟
在生僻业的规划实施过程中,没人告诉我们该有哪些,我们只能靠摸透一个又一个访问逻辑图和数据生命周期,来摸索群集内有哪些角色和依赖关系。 架构师的核心技能括画好访问逻辑和数据流量图,因为问题现状描述清楚了,问题就解决了一多半了。一个好的业访问逻辑图,不仅仅是几个圈圈几条线连起来,其息量大到罗访问过程的所有元素,也要详略得当高亮关键点。 5. 各环节都不可盲 容灾设计中都尽人事和听天命 整个IT系统中就没有可靠的组件,架构师既不能盲目任撞大运,又不能无限冗余吓唬自己,而是在尽人事和听天命之间做好权衡。比如TCP就是要建立可靠链接,而现在做性能优化的时候,大家又嫌TCP太过笨重了。 业应用不可靠,如果该应用能快速重建也不阻塞其他应用,月级偶发的内存泄漏和意外崩溃都是可以接受的。 支撑性不可靠,对于大部分业,预估一年都不丢一次数据,SLA能到99.95%就可以了。 操作系统故障崩溃,现在商用系统内核都很稳定,一般故障都出在硬件驱动容性上,或者有些照本宣科的傻瓜乱改默认参数。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
后记 以上内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都上云了,它们就只是闲聊的谈资了。但客户上云就能招一个研究这事的工程师,上云确实也很有意义啊。 静人稀,沙子龙关好了小门,一气把六四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
:产品经理需要凌晨从床上跳起来次,然后手机静音漏掉一次故障,才会对监控频繁误报有切肤之痛。 利害关系:缺乏详细监控息和故障处理功能,没漂亮的监控页面和月度报告,监控部门只能依赖其他部门排障,又被被公司领导视作闲,没业绩没晋升也没新HC。 我举的第二个例子是一个网店仓库拣货发货系统的合格产品经理: 技术:对IOT传感器、图像识别技术、网店ERP系统有足够了解。 业:对拣货员的拣货路径、数量、看单还是听单、错误息处理有充分的了解,自己至要做三天拣货员,仓库里的纸板味能熏得你睁不开眼;如果做农业IOT,可能是要养三天的猪,拌猪食扛死猪都要干一干。 利害关系:了解分拣员需要这系统更无脑的拣货,小组长需要用系统约束的分拣员,公司需要这分拣系统更快周转货物。而你既要让客户内部三方满意,也要通过工作的简化明细化,引入自己公司更多的IOT和图像识别设备,甚至用机器人取代一部分人力工作。 某些水货会说这是售前和解决方案的工作,人家跟你又没有隶属关系,凭什么帮你解决就业问题,产品经理要自己调研和汇总客户的合理需求。 2.
p****d 2018-07-11
单机房故障自愈--运维的春天
期望能够在不超过容量保护的情况下进行尽可能的调度,减对用户的影响。 2.即使按照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安水位线:流量处于在安线以下则风险较小,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。 如果安水位线提供的容量不足以满足止损,那我们期望使用上两条中间的容量buffer,同时流量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在流量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,实现故障的恢复。
TOP