关于 兼职少妇包夜全套服务v信78792796 沈阳胡台镇小妹真实服 的搜索结果,共1083
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,含了哪些例,规模、部署情况、例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些括:在机器上部署息(机器IP,部署路径,配置,端口息),例运行状况等其他重要息。简单来讲,它提供了一个名到资源息的一个映射关系。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
w****0 2018-07-11
单机房故障自愈-黎明之战
那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损流程 一个完整的故障处理生命周期括感知、止损、定位、分析四个阶段。
M****点 2018-07-10
中国云计算现状——产品篇
现在虚拟机不能像CDN一样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平从计费和权限层面做好,至在项目级别可以和多个厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和可以让公司增加企业的融资概念和收入构成。中型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴上说不要眼神也很诚。但具体参与过程中,这类工作很有成功案例,我做成功过这类项目感慨也很深,本段落重点解释这些现象并给出建议。 先说IT咨询,过去云计算平吸引到的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为一时一千元的咨询付费。现在高净值客户放出来的云计算咨询标了却没人投标,因为型云计算企业因为资质、高层合作、客户关系等原因没有投标的机会。 我们经常遇到咨询标,但我们也不想投这个标。咨询标的交付物就是各种文档和报表,互联网公司的技术积淀都在技术部,技术人员最烦的就是写文档,而且技术人员匮乏的想象力和沟通能力并不适合做咨询标,让售前承担技术文档书写也扛不住。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为上层托管平的底层工具链,为PaaS平提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线上故障; 业的多地域部署; 多种网络环境及大部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合上面场景,向大家介绍百度持续部署是如何现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行际任。涉及大及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一既灵活又完整的规范。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
流****水 2018-07-11
度云企业级运维平——NoahEE
简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下上面的例子。这个例子中,地图研发的同学就可以在运维平中选中导航的模块进行升级,运维平会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。 资产管理 在机房里,各种各样的器、网络设备和安设备7x24时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复?
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几器 目前都荒废了,因为卡得一匹。
m****t 2018-07-11
设计中立公有云云管平
至于渗透测试和漏洞扫描,其和云没直接关系,没必要纳入云管平。WAF可以参照负载均衡进行设计处理。 物理机和自控超卖比虚拟机,这是部分云厂商才提供的功能,这类资源开销偏大和计费不灵活,客户要给云管平发邮件才能申请到资源,客户日常有类似于虚拟机的管理和监控需求。 云监控是一个基本免费的,对该的设计含安评估、数据展示和通知机制。安评估就是要不要装各厂商以Root权限运行的Agent,数据展示就是各种监控统计表和折线图展示给客户,各厂商是直接通知到最终用户还是通知到云管平后中转传递息。 其他,诸如域名、ICP备案、虚拟空间等。 第五核心业系统 已知云管平要管理上述资源,且不同资源的优先级不同、同一个资源也不需要部署所有功能,那云管平自身该如何设计和展示?经过对多个云管平的调研统计,其核心必须的业系统有四个,分别是“管理平”“用户系统”“计费系统”“厂商API封装工作”。这几个业子系统都有几个人月就可以做出的简易版核心功能,也可以按照大型软件工程去做功能规划设计。 管理平 这是运营人员使用的的资源统计、展示操作平
小****园 2018-07-10
让PB级云存储不再神秘
云存储不能违背商业的本质,甲方没蠢到敢让乙方赔钱做,但采购决策层更喜欢看谁的报价最低。数十PB的数据上云后基本下不来,平方无论是提价还是降速,有的是追加预算的手段;如果对方是赔本卖吆喝,成功了就会甩开这个袱,失败了就直接倒闭。我谈PB级存储项目时,我很愿意分享不同底层技术带来的际成本构成,为什么同样的价格我们还能挣钱而友商已经在贴钱,相关内容会在第四章节详细说明。 成功案例是很重要的决策依据,但这个依据很难考证性。厂商做过PB级项目但其是一群TB项目做的计费融合,厂商确做过数百P的项目却和标准对象存储功能不通用,这类事情太多了,对象存储合同上不会有总容量,发票存根也只是简单的费。客户的成功案例必须是单一命名空间容量达到PB级别,并简要说明文件数量和主要读写场景。考察案例性的方法主要靠听对方能否自圆其说,甚至让多个厂商当面质疑,能逻辑自治的厂商终归还是靠谱一些。 大客户对云端数据的处理的要求比中客户更简单,因为复杂业功能可以自己做,还可以要求厂商为自己做定制开发。
w****t 2018-07-10
AIOps中的四大金刚
在AIOps落地施中,运维工程师是处于中心的角色,也赋予了新的责,他们是AIOps具体施的需求提出者和成果验收者。具体括: 在AIOps时代,运维工程师一方面需要熟悉运维领域的知识,了解运维的难题和解决思路;另一方面需要了解人工智能和机器学习的思路,能够理解哪些场景问题适合用机器学习方法解决,需要提供怎样的样本和数据,即成为AI在运维领域落地施的解决方案专家。 运维AI工程师 在单机房故障自愈场景中,运维AI工程师将机器学习的算法与际的故障处理业场景相结合,针对单机房故障场景的风险点,进行策略研发与验工作。如下图所示: 运维AI工程师分别设计了如下算法策略来满足整个复杂故障场景的自动决策: 异常检测算法:解决故障发现时指标异常判断问题,基于AI方法现较高的准确率和召回率,作为整个故障自愈的数据基础。 策略编排算法:基于当前线上的际流量和状态,设计损益计算模型,判断基于何种方式的操作组合或步骤,能够使整个自动止损带来收益最大,风险最。 流量调度算法:基于线上容量与时流量情况,进行精确流量比例计算,防御容量不足或不准风险,并现流量调度收益最大化。
追****圣 2018-07-11
给书记省长讲清楚云计算
在最近的十年,移动互联网兴起,便捷的通、打车、外卖、电子支付等功能层出不穷,所有面向个人消费者的行业都在加速互联网化;未来十年里,计算机技术将深刻影响工业生产领域。这时问题出现了,我们需要上千万名工程师吗,我们有这么多工程师吗? 历史总是惊人相似的轮回,在国家决策层面,云计算是个可以和能源、金融相提并论的领域。 第一次工业革命开始时,每一个矿山都安装各自的蒸汽机;第二次工业革命开始时,每一个工厂都要重点解决电力等能源问题;息技术革命开始时每个公司都要有计算机工程师。但百川终到海,发动机能统一标准,电力能源能集中供应,云计算平可以现计算机技术的标准化,凭借规模效应降低成本,让客户直接付费购买息技术,极大减了客户的人力投入以及衍生的时间和管理成本。 息技术革命的核心工作是息的存储和处理,最重要的资源是数据。客户的数据放在云平就像资金放在银行一样,银行可以根据储户的流水评估用,央行可以对货币进行宏观调控,云平一样可以对用户息进行评估计算,甚至国家层面可以进行宏观管理调控。
TOP