关于 北流找红灯区上门服务〖8843O306VX〗服务真实兔康抵呕蓝 的搜索结果,共1072
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些例,规模、部署情况、例运行状况如何? 2.我从哪里来? 游有哪些,不同的量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器部署信息(机器IP,部署路径,配置,端口信息),例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策量调度目标,对于业际无影响,主要验证故障处置程是否符合预期、入口级量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损程 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能量调度与自动止损能力。同时,基于时容量与量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭州电信接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一套产品线全过程的可迁移发布解决方案,现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps水线作业中,Archer可以作为一个环节结合进整条测试发布水线中。
M****点 2018-07-10
中国云计算现状——产品篇
SaaS产品已经出现并行了十几二十年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是比各位读者从业年龄还长的老古董,最新行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用云走公网和之前走内网别并不大,用物理机和虚拟机别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这一点来看,这些SaaS只是云平台的普通用户,和游戏、网站、APP、没有别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。 四、物理机-混合云-云管平台 云主机是物理机的最好替代方案,但也有各种物理机无法被替代的场景需要继续用物理机。 某些云主机的超卖比过高,性能太差,又因为各种原因不更换云厂商,那只能基于性能原因用物理机。 某些硬件特性虚拟机还没模拟出来,或者你模拟了我也不信,比如说Oracle RAC就偏爱硬件存储。 某些非TCP/IP资源必须接专用板卡,比如说接电话网络的器,接专用器材的器,接加密狗的器。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的套路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收亿的,但定个1000万的小目标是能现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损千万。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
附录2:网到一个写NTPD和ntpdate的水文和本文内容有些类似,那个是我多年以前写的,不是借鉴和抄袭,严肃脸。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例子。这个例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
p****d 2018-07-11
单机房故障自愈--运维的春天
【解决方案】 基于容量水位的动态均衡 在量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安全水位线:量处于在安全线以下则风险较小,可以一步进行切换。 水位限:该水位线表明的最大承载能力,一旦量超过故障水位线,很大概率会导致容量过载。 如果安全水位线提供的容量不足以满足止损,那我们期望使用两条中间的容量buffer,同时量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,现故障的恢复。 2业线止损策略需求差异大 【问题描述】 我们现了基础的单机房故障量调度止损算法,但在部分业线中仍存在较大的需求差异,比如: 分步动态调度需求:业存在充Cache的情况,过程中能力降低,需要控制切换速度。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中小客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不足,但面对大客户时会很坦诚。 作为持久共生的大甲方,请关注乙方的成本线,买家永远没有卖家精。如果甲方给够钱了,乙方仍然用劣质硬件IDC和过高超售比,小云厂商一般是老板带头节俭,而大云厂商很可能是执行层的人弄错了,作为甲方该闹就要闹。 人为原因 云厂商的人为故障总是糊涂账,但细心的甲方是能看出来端倪的。有时候厂商想遮蔽技术和资源的问题,会说是人为原因,缓过这一次故障赶紧修订BUG和准备资源;有时候明明是人为原因,但人为故障都是打脸锤,厂商脸会肿而且要赔偿,可能会个其他原因来给脸部降降温。 对于落是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的际损失更小,甲方无法触及云厂商能倒腾出故障的部。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业信誉。
追****圣 2018-07-11
给书记省长讲清楚云计算
云基地是无烟工业,并不需要雇佣大量人口,对直接促进就业帮助不大;但云计算没有体矿产投入和物品产出,只需要大量电力启动电脑也不会产生大量污染。 云基地像电视台和信号塔一样,通过产生和扩散数据信息对客户提供,这些信息的传输没有物成本,光速直达全球每个角落。 因为云基地全球客户,所以云基地可创造极高的营收,但不能简单的计入地方政府的GDP。一个耗电三千瓦的机柜加附属空间占地5平方米,如果云计算资源全部售出,每年可产生20万元以的营收。但是这些营收会计入云计算公司所在地,而非云基地机房所在地,云基地只能被当做外地公司在本地租赁的库房,只会在所在地消费掉地租、电费和网费。各地政府只有提供足够的优惠政策,才能吸引云计算公司在当地成立独立税核算的分支机构;有长久规划的地方政府甚至可以将云计算人才逐步引入当地,形成高科技硅谷园。 大型国企要做云计算的主要问题是缺乏人才,在私企做云计算的收入是国企的3倍以,国企很难保证核心员工不失。国企如何收罗高薪互联网人才这个问题,可能不是靠几个户口指标能解决的。
w****t 2018-07-10
AIOps中的四大金刚
原因如下: 策略和参数需要进行调整 量调度、容灾策略等策略,针对不同的业线,配置并不相同。例如某些业对响应时间敏感,跨地域的调度会带来较大的延迟,影响用户体验,这时就需要根据业情况配置机房之间的跨机房量调度延迟系数,来量优先调度到延迟系数最低的机房。 通用框架无法满足所有需求 部分业线需要对原有的策略进行部分重写才能够满足需求。例如,部分业量调度时,需要联动降级来满足容量需求,这就需要额外增加降级联动的逻辑。 那么,就需要运维研发工程师出手来解决这个问题。根据业线的际情况,对策略和参数进行配置和调优,对通用框架无法满足的需求,进行定制化研发,使得单机房故障自愈方案能够际应用在不同业线。 AIOps时代的职责和技能变化 运维研发工程师负责基于业线特征的运维研发工作,在传统运维中,是运维自动化的施者,现了针对业场景的自动化运维施落地。 在AIOps时代,运维研发工程师承担了AIOps智能化运维解决方案在业线施落地的职责。他们是AIOps场景的践者,将AIOps解决方案与业架构特征相结合,现AIOps在业线的落地。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招一个研究这事的工程师,云确也很有意义啊。 夜静人稀,沙子龙关好了小,一气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
M****H 2018-07-11
故障定位场景下的数据可视化
例如我们怀疑是某几台器导致的拒绝量升,我们可以基于多维度统计报表,点击排序到拒绝最大的域,然后依次展开到拒绝最大的机房和机器。 点击详情后,我们就可以跳转到机器对应的页面,查看对应机器的详细数据来进行定位。 寻关联事件定位 根据历史经验,大多数的线故障都是由于变更操作所引起的,包括程序、数据、配置等变更事件,增删机器例、执行预案等运维事件,甚至包括可能引发量突增的活动运营事件。对于某些体积庞大的产品线,开发和维护人员众多,以事件的发生更是千丝万缕、错综复杂。 面对这个问题,我们设计并推出了一种可以解决这种问题的通用性组件——事件图。 通过事件图,可以快速筛选出故障的前后时间,发生或发生中的事件,每个事件通过色块的长短位置,展示了开始结束时间以及持续时长。我们可以快速的分析出对应时间的故障可能是由于某些操作开始或操作完成引发的。 对于部分业线,同一时间段发生的事件可能有百甚至千条,我们提供便捷的筛选功能来解决这一问题。通过事件类型标签,打开或关闭某一类事件的展示,优先排查最有可能的根因。
TOP