关于 双流县酒店上门找小姐服务〖8843O306VX〗服务真实忠练坟 的搜索结果,共1136
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些例,规模、部署情况、例运行状况如何? 2.我从哪里来? 游有哪些,不同的量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器部署信息(机器IP,部署路径,配置,端口信息),例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策量调度目标,对于业际无影响,主要验证故障处置程是否符合预期、入口级量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损程 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能量调度与自动止损能力。同时,基于时容量与量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一套产品线全过程的可迁移发布解决方案,现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps水线作业中,Archer可以作为一个环节结合进整条测试发布水线中。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
几个业内好友都明确说一根裸光纤最多跑10G带宽,而于老板明确表示裸光纤任何一个波分(或者不做波分)都可以跑100G以。 后来我和于老板深究原因,不可能几个朋友都骗我或者都蠢,很可能前些年光纤波分机自己只能甩出10G口,或运营商租光纤套餐里只有10G规格,给大家造成了裸光纤只能跑10G带宽的印象。同样固有的印象是光纤必须从运营商那里租,而且价格很贵还必须买波分设备等等;其现在企业专线的市场竞争很充分,拉同城裸纤一公里也就几百块钱,而且短距离裸纤也不值得波分设备,直接对接模块即可。 二、NTD是试金石 我对裸光纤是外汉,但同样的技术误解让我想到了NTP,我一直拿ntpd和ntpdate当做初中级系统工程师的试金石,分不清就月薪五千,分得清就八千以(2014年市价)。但很多货的IT专家也在此事跌倒,我也希望通过聊清楚一层误会,说明高级工程师该少迷信多思考。 NTP是网络时间协议,它是多项传输、计算、加密技术的核心参数。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的套路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收亿的,但定个1000万的目标是能现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损千万。
M****点 2018-07-10
中国云计算现状——产品篇
客户没有对接成本,可以随时更换其他云厂商,或默认即使用多个云厂商,普通项目不需要高级售前、解决方案和质性定制开发。 客户只关注价格和质量两个维度,不用承担太多选型责任,大不了切走就行,甚至有专的中立CDN监测的平台。 虽然业内对CDN生意评价不高,认为这就是卖资源,但每个云平台都将CDN收入列为重要单项,成熟的模式催熟了巨大蛋糕。 关于Serverless的介绍,我建议大家搜一下ZStack张鑫的那篇文章。Serverless的之处在于要求程序为自己进行改造,其他强调按需付费的计算只是快速释放资源的把戏,Serverless才是正的计算能力集装箱,未来计算场景下的CDN。 三、SaaS产品 其SaaS产品和狭义的云计算没一毛钱关系,广义的云计算连设备租赁和人员外包都能算进去吹水框架,自然也给SaaS云预留了位置。
x****7 2018-07-10
从外行进阶专业 传统企业AI转型差的可能只是一个百度EasyDL
“我们和百度一起合作,现可即用、更轻快、高精度、强安全的特点,帮助品牌商提升了执行效率。”惠合科技CEO郑云帆表示,公司已准备与品牌商联手,扩大“e佳”方案的使用范围。 事百度EasyDL每一次开放新的能力,就会有一批嗅觉敏锐的企业迅速跟进,新的创新案例层出不穷。 2018年12月,百度线了EasyDL定制化文本分类功能,很快,专注于货运O2O的创新企业货拉拉,基于此打造了一套提升整体运营效率的系统,可筛选优质用户留言,从而精准定位目标客户,准确率高达99%,率先进入AI赋能物的新趋势中。 源创、惠合和货拉拉并无太多的AI积累,也没有太多深度学习基础,AI却用起来得心应手,这也能说明百度EasyDL平台本身的简单、易用。 一方面,百度EasyDL支持定制图像、文本、声音等多种类型的深度学习模型,可以低成本高效地定制训出符合自家业场景需求的高精度AI模型;另一方面,百度EasyDL在几个时甚至几分钟内就能够得到API或者离线SDK能力,使得企业能快速验证AI效果,再决定是否加大投入。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和安全设备7x24时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单程解决了面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单程覆盖了日常机房运维中的操作,从设备采购入库、架、机架变更,直到设备下架、出库全生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
p****d 2018-07-11
单机房故障自愈--运维的春天
【解决方案】 基于容量水位的动态均衡 在量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安全水位线:量处于在安全线以下则风险较,可以一步进行切换。 水位限:该水位线表明的最大承载能力,一旦量超过故障水位线,很大概率会导致容量过载。 如果安全水位线提供的容量不足以满足止损,那我们期望使用两条中间的容量buffer,同时量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,现故障的恢复。 2业线止损策略需求差异大 【问题描述】 我们现了基础的单机房故障量调度止损算法,但在部分业线中仍存在较大的需求差异,比如: 分步动态调度需求:业存在充Cache的情况,过程中能力降低,需要控制切换速度。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招一个研究这事的工程师,云确也很有意义啊。 夜静人稀,沙子龙关好了,一气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不足,但面对大客户时会很坦诚。 作为持久共生的大甲方,请关注乙方的成本红线,买家永远没有卖家精。如果甲方给够钱了,乙方仍然用劣质硬件IDC和过高超售比,云厂商一般是老板带头节俭,而大云厂商很可能是执行层的人弄错了,作为甲方该闹就要闹。 人为原因 云厂商的人为故障总是糊涂账,但细心的甲方是能看出来端倪的。有时候厂商想遮蔽技术和资源的问题,会说是人为原因,缓过这一次故障赶紧修订BUG和准备资源;有时候明明是人为原因,但人为故障都是打脸锤,厂商脸会肿而且要赔偿,可能会个其他原因来给脸部降降温。 对于落是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的际损失更,甲方无法触及云厂商能倒腾出故障的部。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业信誉。
w****t 2018-07-10
AIOps中的四大金刚
在AIOps落地施中,运维工程师是处于中心的角色,也赋予了新的职责,他们是AIOps具体施的需求提出者和成果验收者。具体职责包括: 在AIOps时代,运维工程师一方面需要熟悉运维领域的知识,了解运维的难题和解决思路;另一方面需要了解人工智能和机器学习的思路,能够理解哪些场景问题适合用机器学习方法解决,需要提供怎样的样本和数据,即成为AI在运维领域落地施的解决方案专家。 运维AI工程师 在单机房故障自愈场景中,运维AI工程师将机器学习的算法与际的故障处理业场景相结合,针对单机房故障场景的风险点,进行策略研发与验工作。如下图所示: 运维AI工程师分别设计了如下算法策略来满足整个复杂故障场景的自动决策: 异常检测算法:解决故障发现时指标异常判断问题,基于AI方法现较高的准确率和召回率,作为整个故障自愈的数据基础。 策略编排算法:基于当前线量和状态,设计损益计算模型,判断基于何种方式的操作组合或步骤,能够使整个自动止损带来收益最大,风险最量调度算法:基于线容量与量情况,进行精确量比例计算,防御容量不足或不准风险,并量调度收益最大化。
追****圣 2018-07-11
给书记省长讲清楚云计算
对于四线城市政府和中型国企,因为现困难资源有限是搞不了云计算的;二三线城市和大型国企才能提供云计算公司感兴趣的资源。
M****H 2018-07-11
故障定位场景下的数据可视化
干货概览 百度拥有百条产品线,数十万的,每个时时刻刻都在产生着海量的监控数据,形成的监控项规模总数已达数十亿。面对如此海量的数据,在日常运维(如故障诊断、成本分析、性能优化等场景)过程中,传统的统计图表难以有效直观地展示如此庞大的数据。因此,优秀的监控数据可视化产品就呼之欲出,他既要数据准确、全面、时效性高,也需要提升用户的使用体验,使其能在茫茫数据中一眼就能发现想要观察的数据。 那么怎么做才能适应用户需求、完成精准展示,同时又能挖掘数据价值呢?下面我们从故障诊断的场景出发,来看百度智能监控平台是如何充分利用数据可视化武器来解决际业问题的。 故障定位可视化思路 在标准的故障处理程中,故障定位一般可分为两个阶段: 故障止损前:期望可以快速获得可用于止损决策的信息,做出相应的止损操作使得恢复。比如通过确定故障范围,调度量绕过故障机房或摘除故障例等。 故障止损后:仍需要进一步到导致故障的深层次原因,确定故障根因,将线环境恢复到正常状态。
TOP