关于 古蔺县附近红灯区一条街怎么去〖8843O306VX〗服务真实把 的搜索结果,共1466
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示例集合,般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景:我是名OP工程师,负责几十个系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那多部署信息,办? 场景二:我是名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容通知给下游模块? 场景三:我的部署例有个出现故障了,我想对下游屏蔽该故障例,办? 下面以个简单的例子来说明,假设个模块名是Server,它的上游是Proxy,下游是Redis,当出现变更或者故障时,如何让上游感知到呢? 当新增上线例、下线摘除例或者例发生故障时,BNS系统通过部署在机器上的客户端时感知到例的状态变化,同时新增和删除例的变更情况会立即同步到分布式的缓存系统中,这样用户通过个BNS名字就可以感知到下游的例变化。
布****五 2018-07-10
如何执行命令
面临的困难 命令行的三要素,也是如何执行命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器上每天执行几十亿命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24小时稳定运行,就不是件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建个可靠的命令传输网络,使命令信息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
双****4 2018-07-11
【杂谈】猎场没那精彩--还原的猎头
诸如“猎头要做的就是顶尖人才放到合适的职位上”这类话听听就好,候选者是不是顶尖人才猎头说了不算,能不能进这个公司猎头同样说了不算。猎头就是提供人才搜寻的供应商,这个供应商不能替甲方人事和业部门做决策。 第四点,猎头不会固执于个项目,猎头不会跟候选人强推意向单位的宏大蓝图,因为候选人本人也是业内专家不用猎头来教;更不会向甲方强推候选人,面试官眼拙运气差那就只能认栽,本公司bHR都无法说得的面试官,外部猎头能说什?而且稀缺人才总是供不应求的,转手这个人卖给别的公司或者别的猎头样能拿佣金 第四部分.如何识别资深还是新手猎头 面试者来看资深猎头和新手猎头是很容易别的。 新手猎头只会看你的履历里几个技能和职位的关键字,除此之外个字都不懂;资深猎头有眼睛有脑子,会分析和询问你的简历。 新手猎头对职位的解析和路人甲没什别,只会强调待遇、级别和公司是名企;资深猎头可以说明这个职位在该企业内是具体做什的,有多大重要性。 新手猎头是撒网炸鱼,对每个面试者没花时间也并不热心;资深猎头为了次面试准备了超过水货同行十倍的时间,催面试反馈她比你还着急。
y****n 2018-07-09
Apollo 自动驾驶感知技术分享
这些信息会被我们决策模块进行分析和提取,在周围环境车辆行驶状况下,下走才是安全的。控制模块会让车向前行,感知模块获得新的信息,不停循环,应对更新的环境状态,现整体良性的循环。 核心:感知用来做什? 感知的输入跟环境相关。只要符合件,都可以被列为感知。在 Level3 和 Level4 里定义的细分任输入输出具体化。 障碍物检测,包括人、车、石头、树木等。上图是点云输出,下图是图像感知示例。Level3 检测结果障碍物,对于 Level4 来说,不仅知道这是车,而且可以将其按大车、小车分类,因为大车和小车的开车方式不样。不同的车,做出的决策规划不样。你可以超小车,但无法超大车。 我们需要个很细的障碍物分类,这根据输入的不同划分,有点云分类和障碍物中的分类。著名例子是绿的识别,你需要判断交通的颜色。障碍物检测分类,我们得出障碍物信息,这样有利于我们做后续决策。 我们要知道每个障碍物可能运行的轨迹,它会不会超车、插入车道或者无故变线,这需要障碍物跟踪。障碍物跟踪是很重要的模块。我们要运用障碍物,也有对场景的分析,我们点云也用到这个。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
录:NTPD时间跃变不遗漏Crond的验 1、当前系统时间是 23点35分。 [root@instance-6ot6pwji ~]# date Wed Nov 8 23:35:02 CST 2017 2、我故意系统时间调整到 23点32分;注意这个时间不能和时间差太久,差太久了ntpd认为网络时钟源不权威,很久都不会进行时间同步。 [root@instance-6ot6pwji ~]# date-s 23:32:00 Wed Nov 8 23:32:00 CST 2017 3、做好日志打印的crond,设置每分钟打印次时间,到第35分钟时打印次时间: 注意不能时间太,因为crond可能还没来得及载入新配置,ntpd也没完成时间校准,这些字我必须抢在2分钟内打完。 [root@instance-6ot6pwji ~]#crontab -l */1 * * * * echo"current" `date` /tmp/clock.log ### 上文是个检证时间戳 35 * * * * echo "Hit time!!!"
M****点 2018-07-10
中国云计算现状——产品篇
Serverless的之处在于要求程序为自己进行改造,其他强调按需付费的计算只是快速释放资源的小戏,Serverless才是正的计算能力集装箱,未来计算场景下的CDN。 三、SaaS产品 其SaaS产品和狭义的云计算没毛钱关系,广义的云计算连设备租赁和人员外包都能算进吹水框架,自然也给SaaS云预留了位置。 SaaS产品已经出现并流行了十几二十年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是比各位读者从业年龄还长的老董,最新流行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用上云走公网和之前走内网别并不大,用物理机和虚拟机别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这点来看,这些SaaS只是云平台的普通用户,和游戏、网站、APP、没有别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。
w****0 2018-07-11
单机房故障自愈-黎明之战
单机房容灾能力--盲测验收 完成以上四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本件。那如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
----老舍《断魂枪》 云计算大潮到来了,我IT技术像五虎断魂枪样收起来了。我不会将它压到箱底,偶尔我也会练练聊聊,纪念下那个搞技术的黄金时代。 本文聊个很有嚼头的技术问题,Linux系统的启动过程,当我们不用自己安装系统以后,丧失了这多乐趣。 正文 1.主板加电和硬件自检,就是开机第屏启动界面。 CPU和内存插得有问题器会滴滴乱叫,而网卡和硬盘插不插都无所谓,因为这些外设都不属于经典的计算机系统。 早期小内存般有内存检测的功能,但256G内存的器启动的速度也太慢了,重启分钟能启动的还能恢复,重启三分钟可能群集性状就变了,所以我们经常顺手就他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板大都是BIOS引导,也有是UEFI引导,但从器用户看别也不大。 主板可选从USB/SATA/NIC这几类接口上获取引导数据,而且可以排队式加载,第个加载不成功就尝试第二个。系统安装镜像都有个防止误操作的倒计时,而网络引导般是排在末位,硬盘引导就是通用的系统启动的方式。
TOP