关于 合肥瑶海区找妹子上门休闲按摩【徴855l6654】服务酒店无定金 的搜索结果,共1037
s****d 2018-07-11
亿元级云用户分析
1.云目的分析 大型云用户云的宏观目的和普通用户类似,但多角色多部的利益诉求非常复杂。 降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和同。 明确责任:客户不想承担各个IT系统的衔接和选型责任,相比软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:云本身并不碰业数据,但云是很好明确业数据存储位置的机会,云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居安思危,在困境危难之中穷极思变,IT技术是企业的潜在增长点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为云目的分析。亿元以器、CDN的订单很多但既技巧也利润,这些资源厂商也在跟云厂商学习如何包装项目。 2.客户角色利益分析 大企业多角色之间的利益诉求不同,所以表现形式也不同。我将客户三大角色列出来讨论,销售-售前-项目经理铁三角组明确客户的诉求,才更好游刃有余的客户。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为托管平台的底层工具链,为PaaS平台提供稳的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线故障; 业的多地域部署; 多种网络环境及大包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结面场景,向大家介绍百度持续部署是如何实现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行实际任。涉及大包及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱章又不规范的代码及配置文件的目录结构,Archer规了一套既灵活又完整的包规范。
M****点 2018-07-10
中国云计算现状——产品篇
既然要用物理机,要和虚拟机联动就要用混云。混云就是用专线打通两朵云,或者让物理机和虚拟机内网互通。肯有读者怪我认识浅薄,但是云内资源调度都做不好的用户,怎么能做好跨云的资源调度。 既然谈到了混云,肯就要谈云管平台,云管平台不是伪需求而是新需求。当客户的非CDN云资源采购额过500万以后,其项目之间没有内网互通的需求,这时候该做一个跨厂商的云端资源管理方案了。现在虚拟机不能像CDN一样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平台从计费和权限层面做好,至少在项目级别可以和多个厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和实施 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和实施可以让公司增加企业的融资概念和收入构成。中小型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴说不要眼神也很诚实。但具体参与过程中,这类工作很少有成功案例,我做成功过这类项目感慨也很深,本段落重点解释这些现象并给出建议。
追****圣 2018-07-11
给书记省长讲清楚云计算
建设云基地需要的数据中心、网络、电力资源必须从当地采购,如果当地缺乏这些资源云基地法建设和生产运行。 数据中心的要求不高,简单理解成一个做好恒温恒湿除尘防盗的车间厂房,对交通和位没太高要求。 数据中心的网络接入和电力接入是核心需求,一个数据中心每年网络接入费用都在千万以,当地运营商必须提供物美价廉的网络资源。数据中心对电力的要求是大量且稳,数据中心每年的电力消耗都在数万千瓦以,其电力使用优先级等同于医院手术室,绝对不能接受拉闸限电。 器就是高功耗高价格的专业电脑,云计算企业的采购规模一般远大于政企集采,他们能从硬件厂商那里拿到极限低价,政府和国企能提供的更多是采购资的支持。 云计算是一个商业,不仅需要硬性支持,还需要足够的环境和政策支持。当前云计算公司聚集在一线大城市,环境规范稳但成本极高竞争压力极大,云计算企业也在尝试向二三线转移突围。二三线城市不仅要积极准备云计算硬性资源,还可以用作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示一个的实例集,一般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯一的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景一:我是一名OP工程师,负责几十个系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那么多部署信息,怎么办? 场景二:我是一名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容怎么通知给下游模块? 场景三:我的部署实例有一个出现故障了,我想对下游屏蔽该故障实例,怎么办? 下面以一个简单的例来说明,假设一个模块名是Server,它的游是Proxy,下游是Redis,当出现变更或者故障时,如何让游感知到呢? 当新增线实例、下线摘除实例或者实例发生故障时,BNS系统通过部署在机器的客户端实时感知到实例的状态变化,同时新增和删除实例的变更情况会立即同步到分布式的缓存系统中,这样用户通过一个BNS名字就可以感知到下游的实例变化。
x****7 2018-07-10
从外行进阶专业 传统企业AI转型差的可能只是一个百度EasyDL
与企业业深度结的AI应用需求,往往需要结所在领域很强的专业知识,通用AI技术法满足,例如,目前业界推出的通用物体和场景识别的API法满足大量个性化的需求:家装企业想识别装修图库中的细分家居风格、房间布局分类等,物业公司想通过摄像头识别小垃圾桶是否已满,施工单位想通过图像识别工地的工人有没有穿工、戴安全帽等,这些场景需求是常见的业场景,但是企业很难到现成可用的AI技术,往往需要自己做制化的研发。 2)AI技术自研及运维成本高昂。自己研发AI技术会面临多道难关,首先是AI人才关,国内AI人才池有限,据人民日报的报道,我国人工智能的人才缺口超过500万,供求比例仅为1:10。AI人才的年薪动辄数十万,除非有庞大的业场景,否则,一般体量的企业难以组建独立的AI团队。其次是基础设施关,AI运维需要的器、GPU,在财也是不可承受之重。 3)开发周期过于漫长。用传统的构造深度学习算法模型的方式来做,整个流程至少要花几个月时间,此时市场需求可能已经“凉”了。同时面对新型的AI场景,企业也法预测投入AI研发能对业带来的实际效果,这是一大隐患。
亚****啦 2018-07-11
IT断魂枪--聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是聊的谈资了。但客户云就能少招一个研究这事的工程师,云确实也很有意义啊。 夜静人稀,沙龙关好了小,一气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
流****水 2018-07-11
度云企业级运维平台——NoahEE
简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例。这个例中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一条件达成时报警。管理通过对资源理的组织,极大的简化了运维操作,提升了运维效率。 资产管理 在机房里,各种各样的器、网络设备和安全设备7x24小时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复?
w****0 2018-07-11
单机房故障自愈-黎明之战
要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要保证变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦 描述:下游使用固IP或固机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间法进行快速的流量调度止损。 要求:线关联不允许使用固IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。 单机房容灾能力--盲测验收 完成以四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本条件。
双****4 2018-07-11
【杂谈】猎场没那么精彩--还原真实的猎头
大部分猎头公司也所谓简历库,特别是互联网行业更为明显。高端猎头是要钓大鱼的,但钓鱼先要等鱼长大,中国企业都兴起没几年,还没有稳的高管和高工群体,同城同行业挖来挖去就那几个熟人;而那些新手猎头三个月不开锅就要饿死,撒网甚至炸鱼的收益会更保底一些。从长周期来看,猎头属于利用信息不对称来牟利的行业,互联网技术本来就是要消除信息不对称。现在有跳槽意向的普通员工会在招聘网站更新简历,中高层会主动布局等待候选单位钩,专单一猎头更新简历库的互联网人才越来越少了。 在甲方来看,个猎头公司签个作协议是很随意的,这些猎头谁做成单了才给钱,做不成也没损失,甲方还能享受一呼百应蜂拥而的快感。但天下没有免费午餐,免费供应的简历质量法保障,耽误的人力和时间都法衡量。滥用猎头还会增大不必要支出,中下级岗位人事自己也能搜到简历,而很多初级猎头就做佣几千块的小单。 如果甲方要精英猎头,先要确认该岗位是否值得去专业人才;当甲方觉得能付出十万块钱的佣是值得的,好甲方就能到好供应商;如果招聘方把几千块佣当做传家宝贝,给猎头花这个钱还不如给面试者报销打车费。
M****H 2018-07-11
故障位场景下的数据可视化实践
基于面的需求,可以总结为以下三个位的层次,从整体到局部逐步缩小故障范围,到故障根因: 全局问题位:快速确认线状态,缩小故障判范围。为可能的止损操作提供判断依据。本文会介绍如何构建一个全景分析仪表盘。 细分维度位:通过分析地域、机房、模块、接口、错误码等细分维度,进一步缩小问题范围,确需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的位难题。 故障根因确认:一些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如线变更、运营活动导致的故障。本文针对导致故障占比最高的变更线类故障进行分析,看如何快速到可能导致故障的变更事件。 全景掌控缩小范围 对于一个乃至一条产品线而言,拥有一个布局理、信息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控平台中,我们提供了一款可制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据信息。
TOP