关于 吉林临江找妹子上门按摩保健服务【微85516654】无定金 的搜索结果,共996
h****e 2018-07-10
程序:我从哪里来?
Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器的Check Agent会主动探测所有实例的运行状况,并将康检查的结果报给Cache层,同时更新数据库内容。 总结 BNS系统满足间交互中常见的的资源位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从哪里来?该往哪里去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎大家积极留言。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固的标准并且支持制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线故障 针对分级发布的使用场景,Archer支持串并行线及暂停点功能,可照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特地域(机房)中生成特配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的线在发起任后,部分代码将首先被转存至中转机
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目信任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自义SLA标准——大部分API云连等待超时都没义。 版本发布和数字化转型——论是观的版本发布还是宏观的数字化转型,其实都和云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大主,云厂商的下限是类比传统IDC,要把主伺候舒了就要学IOE类集成商。
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固IP或固机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间法进行快速的流量调度止损。 要求:线关联不允许使用固IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。
流****水 2018-07-11
度云企业级运维平台——NoahEE
作为一系列运维系统的集合,Noah包括了管理、机器管理、资源位、监控报警、自动部署、任调度等等,已经了百度数年之久。我们推出的NoahEE(Noah Enterprise Edition)脱始于Noah,为企业提供了一站式运维解决方案,覆盖了包括日常的故障管理和变更管理中典型的运维场景,致力于为政企、融、教育等行业提供业可用性障、提升运维效率。 图1 NoahEE概览 接下来,我们把这艘诺亚方舟分解开来,近距离观察一下这艘船的方方面面。 管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几台甚至一台机器,进行变更等运维操作简单直接,登录到机器人工操作就好了。随着业的发展,分布式应用与的广泛使用,我们越来越多的面着运维场景与运维执行之间的脱节。 举个例,今天17:00开始对X机房的地图导航模块进行升级。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
我们很难成功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背黑锅了。 真有TOP10的互联网公司和亿国家级项目里用ntpdate+crond,一代架构师为什么有这个误会人深究,下一代人将误会固化为偏见,新一代人将偏见神化为迷信。 但论误会、偏见还是迷信,时间跃变、回退和停滞对应用壮性和业安全性的威胁始终存在,时间不仅仅是我玩游戏时用的魔法,忽视问题并不能掩埋问题。 六、见知著和防杜渐 我讲NTPD和裸纤并不是为卖弄知识,也不是为做偏科普,而是希望进阶工程师们多考虑一下如何规避这类误会?我们在做技术工作时,是不是只关注客户和同事能提出的需求?客户永远不知道裸纤的物理特性,同事也不会知道时间也能错误和波动,他们能说清楚业逻辑就不错了。 把所有的精力都用到做业逻辑,你只是个编程语言翻译机而已;自己主动观测技术环境依赖,有资格有能力做出技术选型决策,才是给Coder群集做技术校准的人。即使你不想做技术决策人和管理者,多怀疑和观察环境,也能少些沟通成本,少走一些冤枉路,多一份自信和自尊。
布****五 2018-07-10
如何执行一条命令
的困难 命令行的三要素,也是如何执行一条命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器每天执行几十亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24小时稳运行,就不是一件简单的事情了。所谓远行轻担,量大易也难,在构建这样的执行系统的过程中要面诸多困难,此处举几个突出的例如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
若****客 2018-07-10
IT架构的本质--我的五点感悟
2.群集设计通用规则 前端复制后端拆,实时改异步,三组件互换 前端复制后端拆,实时改异步,IO-算力-空间可互换——要做架构就要群集,而群集设计调优翻来覆去就是这三板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做水平复制扩容,在网站类应用状态-会话持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散操作就越爽,但全局操作开销更大更难控制。 实时改异步是我学的最后一IT技术,绝大部分“实时操作”都不是业需求,而是某应用法看到后端和Peer状态,默认就要实时处理结果了。CS模式的实时操作会给支撑带来巨大压力,Peer合作的实时操作可能会让数据申请方等一宿。架构师将一个脑大事拆分成多个小事,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的小事需要更高业层级做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。
双****4 2018-07-11
【杂谈】猎场没那么精彩--还原真实的猎头
大部分猎头公司也所谓简历库,特别是互联网行业更为明显。高端猎头是要钓大鱼的,但钓鱼先要等鱼长大,中国企业都兴起没几年,还没有稳的高管和高工群体,同城同行业挖来挖去就那几个熟人;而那些新手猎头三个月不开锅就要饿死,撒网甚至炸鱼的收益会更底一些。从长周期来看,猎头属于利用信息不对称来牟利的行业,互联网技术本来就是要消除信息不对称。现在有跳槽意向的普通员工会在招聘网站更新简历,中高层会主动布局等待候选单位钩,专单一猎头更新简历库的互联网人才越来越少了。 在甲方来看,个猎头公司签个合作协议是很随意的,这些猎头谁做成单了才给钱,做不成也没损失,甲方还能享受一呼百应蜂拥而的快感。但天下没有免费午餐,免费供应的简历质量障,耽误的人力和时间都法衡量。滥用猎头还会增大不必要支出,中下级岗位人事自己也能搜到简历,而很多初级猎头就做佣几千块的小单。 如果甲方要精英猎头,先要确认该岗位是否值得去专业人才;当甲方觉得能付出十万块钱的佣是值得的,好甲方就能到好供应商;如果招聘方把几千块佣当做传家宝贝,给猎头花这个钱还不如给面试者报销打车费。
p****d 2018-07-11
单机房故障自愈--运维的春天
比例模式:照预先设的固预案,一个机房故障,该机房的流量照预先设的比例分配到其他的机房。很可能某个机房的容量或剩余机房的总容量不足,切流量后导致多个机房发生故障。 容量护模式:针对固比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充足,容量充足则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量护的情况下进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量法完全可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安全水位线:流量处于在安全线以下则风险较小,可以一步进行切换。 水位限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。
TOP