关于 吉林新地号找妹子上门按摩保健服务【微85516654】无定金 的搜索结果,共1144
不****主 2018-07-09
高精
高精图,是Apollo位、感知、规划模块的基础。 与普通图不同,高精图主要于自动驾驶车辆,通过一套独特的导航体系,帮助自动驾驶解决系统性能问题,扩展传感器检测边界。目前 Apollo 内部高精图主要应用在高精位、环境感知、决策规划、仿真运行四大场景,帮助解决荫道路GPS信弱、红绿灯是位与感知以及十字路口复杂等导航难题。 一、高精图与传统图 当我们开车时,打开导航图通常会给我们推荐几条路线,甚至会显示道路是否拥堵以及每条路线将花费多长时间、是否有交通管制,有多少个交通信灯或限速标志等,我们会根据图提供的信息来决是在行驶中直行、左转还是右转以及对周围驾驶环境的评估。 而人驾驶车缺乏人类驾驶员固有的视觉和逻辑能力。如我们可以利用所看到的东西和GPS来确自己的位置,还可以轻松准确识别障碍物、车辆、行人、交通信灯等,但要想让人车变得和人类一样聪明,可是一项非常艰巨的任。 这时就需要高精图了,高精图是当前人驾驶车技术不可或缺的一部分。它包含了大量的驾驶辅助信息,最重要是包含道路网的精确三维表征,例如交叉路口布局和路标位置。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固的标准并且支持制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线故障 针对分级发布的使用场景,Archer支持串并行线及暂停点功能,可照单实例、单机房、单域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多域部署 的多域部署主要需要解决不同域配置不同的问题。Archer提供了配置派生功能以支持多域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特域(机房)中生成特配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的线在发起任后,部分代码将首先被转存至中转机
h****e 2018-07-10
程序:我从哪里来?
Naming Agent与Cache层的数据交互,采用推拉结合的方式,Naming Agent主动拉取数据和Cache模块推送变更数据,同时Naming Agent客户端会将查询过的数据置于本缓存中,以此降低Cache层的查询压力。 Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器的Check Agent会主动探测所有实例的运行状况,并将康检查的结果报给Cache层,同时更数据库内容。 总结 BNS系统满足间交互中常见的的资源位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从哪里来?该往哪里去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎大家积极留言。
追****圣 2018-07-11
给书记省长讲清楚云计算
客户的数据放在云平台就像资放在银行一样,银行可以根据储户的流水评估信用,央行可以对货币进行宏观调控,云平台一样可以对用户信息进行评估计算,甚至国家层面可以进行宏观管理调控。 综所述,云计算就是将分散在各个公司的信息技术资源汇聚到一个大平台,其兴起始于需求扩大而人力短缺,其未来发展趋势是通过规模经营和数据共享,成为型信息化社会的技术基石。 云计算如何带动方经济 云计算落是要自建数据中心机房,我们一般称之为云基,云基在经济利益和社会影响和传统工厂并不相同。云基通俗易懂的展现形式就是开启数十万个高速运转的电脑铁皮箱,但这些电脑不用接显示器也不用人员现场操作,只要这些电脑能开机能网就能对外。云基和数字产不完全相同,数字产只装修好房,云基关注用这些房做什么。 云基烟工业,并不需要雇佣大量人口,对直接促进就业帮助不大;但云计算没有实体矿产投入和物品产出,只需要大量电力启动电脑也不会产生大量污染。 云基像电视台和信塔一样,通过产生和扩散数据信息对客户提供,这些信息的传输没有物流成本,光速直达全球每个角落。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目信任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自义SLA标准——大部分API云连等待超时都没义。 版本发布和数字化转型——论是观的版本发布还是宏观的数字化转型,其实都和云没直接联系,一个是室内装修工作,一个是建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大主,云厂商的下限是类比传统IDC,要把主伺候舒了就要学IOE类集成商。
双****4 2018-07-11
【杂谈】猎场没那么精彩--还原真实的猎头
大部分猎头公司也所谓简历库,特别是互联网行业更为明显。高端猎头是要钓大鱼的,但钓鱼先要等鱼长大,中国企业都兴起没几年,还没有稳的高管和高工群体,同城同行业挖来挖去就那几个熟人;而那些手猎头三个月不开锅就要饿死,撒网甚至炸鱼的收益会更底一些。从长周期来看,猎头属于利用信息不对称来牟利的行业,互联网技术本来就是要消除信息不对称。现在有跳槽意向的普通员工会在招聘网站更简历,中高层会主动布局等待候选单位钩,专单一猎头更简历库的互联网人才越来越少了。 在甲方来看,个猎头公司签个合作协议是很随意的,这些猎头谁做成单了才给钱,做不成也没损失,甲方还能享受一呼百应蜂拥而的快感。但天下没有免费午餐,免费供应的简历质量障,耽误的人力和时间都法衡量。滥用猎头还会增大不必要支出,中下级岗位人事自己也能搜到简历,而很多初级猎头就做佣几千块的小单。 如果甲方要精英猎头,先要确认该岗位是否值得去专业人才;当甲方觉得能付出十万块钱的佣是值得的,好甲方就能到好供应商;如果招聘方把几千块佣当做传家宝贝,给猎头花这个钱还不如给面试者报销打车费。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
我们很难成功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背黑锅了。 真有TOP10的互联网公司和亿国家级项目里用ntpdate+crond,一代架构师为什么有这个误会人深究,下一代人将误会固化为偏见,一代人将偏见神化为迷信。 但论误会、偏见还是迷信,时间跃变、回退和停滞对应用壮性和业安全性的威胁始终存在,时间不仅仅是我玩游戏时用的魔法,忽视问题并不能掩埋问题。 六、见知著和防杜渐 我讲NTPD和裸纤并不是为卖弄知识,也不是为做偏科普,而是希望进阶工程师们多考虑一下如何规避这类误会?我们在做技术工作时,是不是只关注客户和同事能提出的需求?客户永远不知道裸纤的物理特性,同事也不会知道时间也能错误和波动,他们能说清楚业逻辑就不错了。 把所有的精力都用到做业逻辑,你只是个编程语言翻译机而已;自己主动观测技术环境依赖,有资格有能力做出技术选型决策,才是给Coder群集做技术校准的人。即使你不想做技术决策人和管理者,多怀疑和观察环境,也能少些沟通成本,少走一些冤枉路,多一份自信和自尊。
j****2 2018-07-10
百度大脑开放日来袭 24种全AI能力呈现
比如百度EasyDL与分形科技打造的智能垃圾桶已成功海淀公园,可以对7种常见垃圾自动分类,后期还可以通过增加训练数据识别更多种类;在和德邦物流的合作中,为用户免去了自行填写信息的麻烦,使用制词法分析快递申请,一秒拆分姓名、电话、住址等信息;更具科研意义的还有百度EasyDL与中科院在珍稀鸟类识别项目展开的合作,在传统分类学日渐没落的今天,百度EasyDL可以利用强大的图像识别技术协助专家们对动植物标本、照片进行快速鉴,目前中科院使用EasyDL训练对超过12万幅图片进行分析,目前在700多种鸟类模top5的识别准确率达到93.89%,非雀形目鸟类模型top5准确率达到95.79%,满足线要求。 与卓繁信息的合作,百度大脑还打造了“AI便民”的人值守受理站。通过UNIT、OCR、人脸识别等AI技术,“人值守”的政模式为社会公众提供全年休的24小时自助办事,提升了政府为民的能力。 开放日当天,网红智能猫窝的设计者百度大脑工程师晚兮也在现场为大家讲述了智能猫窝设计者们的初心。
金****洲 2018-07-10
混乱的集群遇见TA 从此岁月静好
第二天 工程师们说:“这个系统必须运行稳,性能卓越,支持跨平台(Linux、Windows、ARM)安装,要做到同时管理万台器,一点儿都不慌”。 第三天 工程师们说:“这个系统不能像瑞士军刀,而应该重剑锋、大巧不工,仅支持基础设施的维护管理,要能做到快速扩缩容!出现问题能立刻回滚,障云环境的安全和稳。” 第四天 工程师们说:“这个系统还要做到‘麻雀虽小,五脏俱全’!要为基础设施提供虚拟化容器隔离,应用部署,应用拓扑搭建和集群控制的功能。为应用的整个生命周期驾护航,提供一条龙。” 总之就是四个字,“轻”、“稳”、“专”、“全”,对于这一切,工程师们很满意。 于是百度云的工程师们结合百度历年来云计算的经验与技术沉淀,潜心打磨,匠心打造,最终强势推出一代私有云云基础设施管理引擎HALO。 Q:HALO是什么?
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到一程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与位: 图2 解决规模带来的问题 在管理这个基打好后,我们再来回顾下面的例。这个例中,图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要变化时及时更数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固IP或固机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间法进行快速的流量调度止损。 要求:线关联不允许使用固IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。
小****君 2018-07-11
踏云落--谈IT就业趋势
3.公版云在细节打磨,肯没有精英制支撑平台那么精细贴切,但对于公司项目来说,一个能跑起来的系统就够用了。很多技术精英也觉得打磨个小系统太累,图省事就买云凑合用了。4.要做好后台支撑并不只依靠精英们埋头苦干,巧妇难为米之炊。云厂商有集采优势,云厂商多给点资源就能省下很多优化工作;部分情况云厂商还有数据优势,比如基于本站数据做风控需要反复调试,而对接云厂商外部参考画像会简单很多。5.技术大牛都是让变态业需求给压出来的,如果公司有技术大牛,那各种需求就来了,但如果没有技术大牛,公司也会压缩自己的IT难度。比如搞大促秒杀就要准备2000万云费,业就会掂量成本。客户要使用PaaS云就要照云厂商的是数据和业的格式约。我们看到越来越多的证据,有了对象存储就不用招存储工程师,有了鉴黄和人脸识别就不用自己推演模型,有是反作弊系统就不用自己研究刷单,有了IM就不用自己做openfire。真正的行业精英是不会护食眼前这碗饭,到问题最优解比住铁饭碗重要的多。
布****五 2018-07-10
如何执行一条命令
可是如果要在几十万台机器每天执行几十亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24小时稳运行,就不是一件简单的事情了。所谓远行轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下障传输的可靠与高效,毕竟百度的几十万台器分布在世界各。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
TOP