关于 孔郑找小妹包夜服务v信78792796 巫山县按摩有服务jru 的搜索结果,共1159
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 的上游哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些括:在机器上部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了一个名到资源息的一个映射关系。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
直接损失括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失括用户任度下降、给竞品占领市场机会等。 单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景下,运维人员通常选择7*24时值班,接收大量的报警,随时准备在紧急情况下进行响应、决策、操作一系列故障止损动作,尽量挽回损失,降低故障影响。 但上述解决方案会面临如下问题: 响应可能不够迅速:例如间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景下,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理过程,并及时向运维人员同步故障处理状态。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具固定的标准并且支持定制化,使用Archer进行部署的统一的结构; 支持分级发布,及时拦截部署引入的线上故障 针对分级发布的使用场景,Archer支持串并行上线及暂停点功能,可照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特定地域(机房)中生成特定配置值; 多种网络环境及大部署 针对多种网络环境及大部署的使用场景,Archer提供了部署数据中转传输。采用中转的上线在发起任后,部分代码将首先被转存至中转机上。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的全面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只一个实例或者多个实例全部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如序提交场景下的ID分配),则需要完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来全局性影响。同时流量调度也无法使得恢复正常。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,用量付费可能会比资源付费更便宜(也可能更贵),而PaaS平台的恼人和诱人之处均在于产品形态很模糊、质量很难评估、很难独立运营、没领头羊企业和事实标准。 PaaS云平台和IaaS云资源的区别就在于,平台需要理解客户的动作和状态。对象存储和CDN就是最典型的PaaS,云平台照数据容量、访问流量、访问次数和方法收费;Mysql RDS只能照内存和日志空间上限计费,但仍然可以替客户做数据库状态展示、分析和备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间限,因为企业里已经数据库和DBA了,DBA并不任云端未知架构数据库的性能、稳定性和数据安全性,而且企业仍然需要DBA承担设计维护工作。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
ntpdate只是个命令不是,它对远端时钟源是盲目任;假设一个根NTP不稳定,所器获得了错误的时间,虽然现在业层可以容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。我们就说联机调试分布式日志,几个节点的时间错可能日志就看不懂了。 NTPD做时间调整会效减少这类情形,它不是简单的龟速调整时间,而是柔性时间调整策略,让时间线的跃变和调整尽量少影响业(详情见附录实验);也不会盲目任远端时钟源,甚至固执的拒绝同步时间。NTPD本机时刻可能不对,但不会忽快忽慢甚至停滞,NTPD通过多次收发选择权威稳定的时间源,算出双方间的网络延迟,然后才会采新的时刻进行时钟同步。 五、误解的根源和影响 因为NTPD不盲从其他时间源,让老一辈IT人会留下NTPD不好用、不靠谱的误会。2005年个人测试用虚拟机的时间经常走慢,到2010年虚拟机还要防范时间停滞的Bug。即使你用物理机投入生产,网络延迟仍然不确定,且要观测NTPD同步效果需要时间。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
流****水 2018-07-11
度云企业级运维平台——NoahEE
简单的说,管理要解决的最核心问题就是如何对资源进行效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下上面的例子。这个例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。 资产管理 在机房里,各种各样的器、网络设备和安全设备7x24时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复?
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还底层工程师能否推动上层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目任云厂商。客户精力就做多云冗余校验,预算就做专资源池部署;未来云厂商还会自定义SLA标准——大部分API云连等待超时都没定义。 版本发布和数字化转型——无论是微观的版本发布还是宏观的数字化转型,其实都和上云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即云端IT资源,也平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。
追****圣 2018-07-11
给书记省长讲清楚云计算
在最近的十年,移动互联网兴起,便捷的通、打车、外卖、电子支付等功能层出不穷,所面向个人消费者的行业都在加速互联网化;未来十年里,计算机技术将深刻影响工业生产领域。这时问题出现了,我们需要上千万名工程师吗,我们这么多工程师吗? 历史总是惊人相似的轮回,在国家决策层面,云计算是个可以和能源、金融相提并论的领域。 第一次工业革命开始时,每一个矿都安装各自的蒸汽机;第二次工业革命开始时,每一个工厂都要重点解决电力等能源问题;息技术革命开始时每个公司都要计算机工程师。但百川终到海,发动机能统一标准,电力能源能集中供应,云计算平台可以实现计算机技术的标准化,凭借规模效应降低成本,让客户直接付费购买息技术,极大减少了客户的人力投入以及衍生的时间和管理成本。 息技术革命的核心工作是息的存储和处理,最重要的资源是数据。客户的数据放在云平台就像资金放在银行一样,银行可以根据储户的流水评估用,央行可以对货币进行宏观调控,云平台一样可以对用户息进行评估计算,甚至国家层面可以进行宏观管理调控。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
大客户在吃够了厂商的亏以后,会选择任能个人商誉,能做出承诺、调动资源和平复问题的销售和人员。 个客户非常任某个云销售,他告诉该销售,虽然某大云高层合作,某大云也说报价肯定比某云低5%;但是某大云的机制问题,出故障从来都是衙门话,每次故障都要客户去乱猜和背锅。最终这个单子在客户执行层的暗助之下,该云快速把业切过来并坐实站住了,这份暗中相助就是靠个人商誉带来的任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。面对意外故障,我们心向客户证明,换了其他厂商也一样会挂;面对人为故障,踏实认错是对客户的最后尊重,而公开事实也是逼着内部不会重蹈覆辙犯同样的错误。 过去大家卖IDC、CDN、器和软硬件积累的个人商誉,是可以应用到云计算领域的。而云的高科技光环褪去、产品同质化以后,企业的核心竞争力仍然是商誉的销售-售前-售后团队,这类人才永远是稀缺资源。 附录 请各位多琢磨评估本厂的云到底哪些组件是靠谱的,不要让赖你的客户受伤又受骗。
若****客 2018-07-10
IT架构的本质--我的五点感悟
在生僻业的规划实施过程中,没人告诉我们该哪些,我们只能靠摸透一个又一个访问逻辑图和数据生命周期,来摸索群集内哪些角色和依赖关系。 架构师的核心技能括画好访问逻辑和数据流量图,因为问题现状描述清楚了,问题就解决了一多半了。一个好的业访问逻辑图,不仅仅是几个圈圈几条线连起来,其息量大到罗访问过程的所元素,也要详略得当高亮关键点。 5. 各环节都不可盲 容灾设计中都尽人事和听天命 整个IT系统中就没可靠的组件,架构师既不能盲目任撞大运,又不能无限冗余吓唬自己,而是在尽人事和听天命之间做好权衡。比如TCP就是要建立可靠链接,而现在做性能优化的时候,大家又嫌TCP太过笨重了。 业应用不可靠,如果该应用能快速重建也不阻塞其他应用,月级偶发的内存泄漏和意外崩溃都是可以接受的。 支撑性不可靠,对于大部分业,预估一年都不丢一次数据,SLA能到99.95%就可以了。 操作系统故障崩溃,现在商用系统内核都很稳定,一般故障都出在硬件驱动兼容性上,或者些照本宣科的傻瓜乱改默认参数。
布****五 2018-07-10
如何执行一条命令
部署过程可以拆解为两个的步骤,一是新软件的上传,二是进程的重新启动。进程的重新启动不必多说,软件的上传可能多种方式,如sftp的集中式,p2p的点对点式等。 监控采集 软件运维过程需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策过程更是需要采集大量的实时息(前期文章《百度大规模时序数据存储》中介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进程状态/系统状态等(如使用grep提取日志,通过ps查询进程状态,通过df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都一个共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
本文聊个很嚼头的技术问题,Linux系统的启动过程,当我们不用自己安装系统以后,丧失了这么多乐趣。 正文 1.主板加电和硬件自检,就是开机第一屏启动界面。 CPU和内存插得问题器会滴滴乱叫,而网卡和硬盘插不插都无所谓,因为这些外设都不属于经典的计算机系统。 早期内存器一般内存检测的功能,但256G内存的器启动的速度也太慢了,重启一分钟能启动的还能恢复,重启三分钟可能群集性状就变了,所以我们经常顺手就把他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板大都是BIOS引导,也是UEFI引导,但从器用户看区别也不大。 主板可选从USB/SATA/NIC这几类接口上获取引导数据,而且可以排队式加载,第一个加载不成功就尝试第二个。系统安装镜像都个防止误操作的倒计时,而网络引导一般是排在末位,硬盘引导就是通用的系统启动的方式。 爱折腾桌面电脑的朋友从这一步开始就玩双系统/WINPE/U盘版Ubuntu/无盘工作站了,还好器维护人员比较单纯专一。 3.读取MBR(可略过)。
小****园 2018-07-10
让PB级云存储不再神秘
最后一条就是些领先大厂直接压制,故意做技术无关的不兼容、甚至拒绝、甚至从其他层面正面打压业。这里就不举例了,太明显针对单一厂商。如果只是技术不兼容那算和其他云平台恶意竞争,如果到了云平台明抢客户自身业的阶段,技术采购决策人请把风险告知公司决策层,该妥协还是硬扛不是你的职责范围。 3、大型用户谨慎选型 大型用户即使只存储1PB,每年也要花100多万了;中型客户只要做选型,而大项目不仅要选型和定制,还更多技术以外的东西要考量。 首先同样说价格问题,大型客户比中客户更难办,客户是嫌价格贵,大客户却怕低价砸场。云存储不能违背商业的本质,甲方没蠢到敢让乙方赔钱做,但采购决策层更喜欢看谁的报价最低。数十PB的数据上云后基本下不来,平台方无论是提价还是降速,的是追加预算的手段;如果对方真是赔本卖吆喝,成功了就会甩开这个袱,失败了就直接倒闭。我谈PB级存储项目时,我很愿意分享不同底层技术带来的实际成本构成,为什么同样的价格我们还能挣钱而友商已经在贴钱,相关内容会在第四章节详细说明。 成功案例是很重要的决策依据,但这个依据很难考证真实性。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
而ToB产品的研发,可能就是缺某些IT技术,或者IT投入、管理、流程等开销太大,最终不具备工程可行性。合格的产品经理,要求从技术水平上镇得住研发,否则就是研发体系的附庸。 我写了一篇《监控专用对象存储的畅想》,这是一个浅层涉及技术的随笔,但好几个存储产品经理都说读不懂这篇文章。因为照toC的产品思路,他们不用关注存储技术,更不会关注TCO成本,但toB产品要成功就必须考虑这些问题。简单抓一个资深存储研发做产品,他很难学会评估TCO成本,对客户需求或者怂的像个软蛋,或者硬的像个棒槌;我们简单抓个售前来做产品,他们算TCO是很溜的,但他们就是搞不定存储技术才去做售前的啊。 ToC产品的设计对象可以笼统说是大众自然人,而ToB产品都是隔行如隔。我们让一个ERP研发转行去做息流是可行性的,但一个合格的存储产品经理被去做IOT产品设计更像是从零开始。 3. 产品经理的管理问题 ToB产品经理很难管理,因为发挥空间、求稳而非求快、评估难度大。 我们见过很多颠覆性爆款ToC产品,但ToB产品都是对旧方案的改良。
m****t 2018-07-11
设计中立公云云管平台
该管理控制台借鉴各大公云控制台即可,所要展示的资源和功能已经在前文讨论过了,该产品可完美模拟功能强大,也可以极速从简只做必要功能。 3.计费系统 标准计费系统的功能复杂又强大,每个账户是预付费还是后付费、当前多少余额/透支额度、单个资源是打整体付费还是量付费,免费配赠资源的占用策略,资源欠费后的保留周期,网银和财付费接口,甚至连发票管理都是计费系统要涉及的。 本部分说明如何用一两个人月就能做出来的对账式计费系统。 用户相对可控,对反赖账逻辑就可以弱化甚至不做。 量付费就要几分钟一次频繁对账,那就把虚拟机、公网IP的量付费砍掉,通通做成月付费;对不能做成月付费逻辑的资源,金额需求直接打或减免(比如说OSS的get post费用是一百块钱上亿次),大金额项目只能做成延迟出账单的后付费(比如CDN账单)。 产品品类不用太多,比如说虚拟机配置保留常用的5-10类就行了,没必要做出四五十个配置类型。 各个厂商产品单价都是微微不同,但云管平台的资源可以做成统一价格。云管平台可以简单的最高价格向客户收费,也可以要求高价云平台做充值赠送把价格实际降低。
M****H 2018-07-11
故障定位场景下的数据可视化实践
基于上面的需求,可以总结为以下三个定位的层次,从整体到局部逐步缩故障范围,到故障根因: 全局问题定位:快速确认线上状态,缩故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建一个全景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进一步缩问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:一些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如上线变更、运营活动导致的故障。本文针对导致故障占比最高的变更上线类故障进行分析,看如何快速到可能导致故障的变更事件。 全景掌控缩范围 对于一个乃至一条产品线而言,拥一个布局合理、息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控平台中,我们提供了一款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据息。
TOP