关于 小妹保健服务 78792796-微V号余杭星桥保健足浴按摩服务 的搜索结果,共849
h****e 2018-07-10
程序:我从哪里来?
4客户端 BNS系统主要包含两个客户端:查询客户端和康检查客户端,我们分别用Naming Agent和Check Agent来代指两个。 客户端部署在所有的机器上,并提供命令行工具和丰富的SDK以及各类插件,方便用户在各个场景使用。 Naming Agent:提供BNS的查询功能,用户可以根据一个名字(组、单元、实例)就能得到详细的信息。Naming Agent与Cache层的数据交互,采用推拉结合的方式,Naming Agent主动拉取数据和Cache模块推送变更数据,同时Naming Agent客户端会将查询过的数据置于本地缓存中,以此降低Cache层的查询压力。 Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器上的Check Agent会主动探测所有实例的运行状况,并将康检查的结果上报给Cache层,同时更新数据库内容。 总结 BNS系统满间交互中常见的的资源定位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、定位、白名单维护、数据库智能授权等,解决了程序“我是谁?
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也无法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满N+1冗 描述:任意单个机房故障时,其机房剩容量不以承担该机房切出的流量。 问题:流量调度导致其机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗,即任意机房故障情况下,其机房均可承载这部分流量,同时需要变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留够容量(如节日、运营、假期)。 4.关联强耦合 描述:上下游使用固定IP或固定机器名进行直接连接。 问题:单机房故障发生时,关联的上下游之间无法进行快速的流量调度止损。 要求:线上关联不允许使用固定IP或机器名链接,需使用具备流量调度能力的上下游连接方式以实现上下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
p****d 2018-07-11
单机房故障自愈--运维的春天
在单机房故障自愈--黎明之战提到的百度网络与业架构情况,我们将整体流量调度止损架构拆分为3层:接入层、层、依赖层。 针对这3层的监控感知、止损决策与故障止损方式的不同,将止损自动决策拆分为外网止损自动决策与内网止损自动决策。 外网止损自动决策:覆盖接入层。基于外网、内网监控信;触发外网止损决策器进行止损决策;执行DNS流量调度止损。 内网止损自动决策:覆盖层、依赖层。基于内网监控、基础监控、业监控提供的故障信;触发内网止损决策器进行止损决策;执行流量调度、主备切换、弹性降级等止损操作。 单机房故障自愈的常见问题和解决方案 传统的流量调度自动止损方案存在如下问题: 1容量风险控制能力不 【问题描述】 传统流量调度的模式有两种:固定比例模式与容量护模式。 固定比例模式:照预先设定的固定预案,一个机房故障,该机房的流量照预先设定的比例分配到其他的机房。很可能某个机房的容量或剩机房的总容量不,切流量后导致多个机房发生故障。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动上层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目信任云厂商。客户有精力就做多云冗校验,有预算就做专有资源池部署;未来云厂商还会自定义SLA标准——大部分API云连等待超时都没定义。 版本发布和数字化转型——无论是观的版本发布还是宏观的数字化转型,其实都和上云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。
若****客 2018-07-10
IT架构的本质--我的五点感悟
架构师将一个无脑大事拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不而损有的选型。比如数据压缩技术就是用算力资源来置换IO和空间,缓存技术是用空间和IO来缓解算力压力,每个新选型都会带来细节上的万千变化,但每种变化都是符合自然规律有章可循的。 一个经典机系统就是中央处理器+主存储器+IO设备,这几个概念居然和群集性能规划是一一对应。 3. 理解硬件天性 角色选型时要看硬件的天然特性 别让硬盘扛性能,别让内存持久,别让网线扛稳定。 架构层软件技术已经够成熟,所谓技术选型不如说是适应场景;在做具体角色选型时,最深度也最易忽视的原则是顺应硬件天性。 我的精神导师说过,如果一个依赖硬盘,那这个就不适合扛性能压力。我经常将读写引到/dev/shm;SSD盘让很多细节调优聊胜于无,还让Fat32枯木逢春;个别队列和分布式存储在意硬盘的性能力,但都是应用了顺序读写内容,且不介意磁盘空间浪费。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,用量付费可能会比资源付费更便宜(也可能更贵),而PaaS平台的恼人和诱人之处均在于产品形态很模糊、质量很难评估、很难独立运营、没有领头羊企业和事实标准。 PaaS云平台和IaaS云资源的区别就在于,平台需要理解客户的动作和状态。对象存储和CDN就是最典型的PaaS,云平台照数据容量、访问流量、访问次数和方法收费;Mysql RDS只能照内存和日志空间上限计费,但仍然可以替客户做数据库状态展示、分析和备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安全性,而且企业仍然需要DBA承担设计维护工作。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不,但面对大客户时会很坦诚。 作为持久共生的大甲方,请关注乙方的成本红线,买家永远没有卖家精。如果甲方给够钱了,乙方仍然用劣质硬件IDC和过高超售比,云厂商一般是老板带头节俭,而大云厂商很可能是执行层的人弄错了,作为甲方该闹就要闹。 人为原因 云厂商的人为故障总是糊涂账,但细心的甲方是能看出来端倪的。有时候厂商想遮蔽技术和资源的问题,会说是人为原因,缓过这一次故障赶紧修订BUG和准备资源;有时候明明是人为原因,但人为故障都是打脸实锤,厂商脸会肿而且要赔偿,可能会找个其他原因来给脸部降降温。 对于落实是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的实际损失更,甲方无法触及云厂商能倒腾出故障的部门。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业信誉。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固定的标准并且支持定制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线上故障 针对分级发布的使用场景,Archer支持串并行上线及暂停点功能,可照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特定地域(机房)中生成特定配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的上线在发起任后,部分代码将首先被转存至中转机上。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序壮性和业安全性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。我们就说联机调试分布式日志,几个节点的时间有错可能日志就看不懂了。
布****五 2018-07-10
如何执行一条命令
监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进程状态/系统状态等(如使用grep提取日志,通过ps查询进程状态,通过df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都有一个共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。 面临的困难 命令行的三要素,也是如何执行一条命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器上每天执行几十亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。
追****圣 2018-07-11
给书记省长讲清楚云计算
云计算不会产生污染,所以不用考虑环减排问题,但其带来的环节能问题很严重,每个数据中心都会占用大量电力。 对于四线城市政府和中型国企,因为现实困难资源有限是搞不了云计算的;二三线城市和大型国企才能提供云计算公司感兴趣的资源。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和安全设备7x24时的运转,为我们的业提供了硬件障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了上面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、上架、机架变更,直到设备下架、出库全生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、上架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
因为照toC的产品思路,他们不用关注存储技术,更不会关注TCO成本,但toB产品要成功就必须考虑这些问题。简单抓一个资深存储研发做产品,他很难学会评估TCO成本,对客户需求或者怂的像个软蛋,或者硬的像个棒槌;我们简单抓个售前来做产品,他们算TCO是很溜的,但他们就是搞不定存储技术才去做售前的啊。 ToC产品的设计对象可以笼统说是大众自然人,而ToB产品都是隔行如隔山。我们让一个ERP研发转行去做信息流是有可行性的,但一个合格的存储产品经理被去做IOT产品设计更像是从零开始。 3. 产品经理的管理问题 ToB产品经理很难管理,因为发挥空间、求稳而非求快、评估难度大。 我们见过很多颠覆性爆款ToC产品,但ToB产品都是对旧方案的改良。产品经理的决策都是要不要抄袭友商、要不要做累计改良,很久才能碰到一次将量变到质变的机会。整个行业要三五年时间才仅有几个人积累出颠覆性业绩,这个环境让带着理想和激情(撞大运)的年轻人如何升级加薪和跳槽哪?我们见过太多ToC明产品经理,但你听说过ToB行业有产品明吗?
m****t 2018-07-11
设计中立公有云云管平台
3.计费系统 标准计费系统的功能复杂又强大,每个账户是预付费还是后付费、当前有多少额/透支额度、单个资源是打包整体付费还是量付费,免费配赠资源的占用策略,资源欠费后的留周期,网银和财付费接口,甚至连发票管理都是计费系统要涉及的。 本部分说明如何用一两个人月就能做出来的对账式计费系统。 用户相对可控,对反赖账逻辑就可以弱化甚至不做。 量付费就要几分钟一次频繁对账,那就把虚拟机、公网IP的量付费砍掉,通通做成包月付费;对不能做成包月付费逻辑的资源,金额需求直接打包或减免(比如说OSS的get post费用是一百块钱上亿次),大金额项目只能做成延迟出账单的后付费(比如CDN账单)。 产品品类不用太多,比如说虚拟机配置留常用的5-10类就行了,没必要做出四五十个配置类型。 各个厂商产品单价都是不同,但云管平台的资源可以做成统一价格。云管平台可以简单的最高价格向客户收费,也可以要求高价云平台做充值赠送把价格实际降低。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
夜静人稀,沙子龙关好了门,一气把六十四枪刺下来;而后,拄着枪,望着天上的群,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又一笑,“不传!不传!”----老舍《断魂枪》
TOP