关于 小妹保健服务【十徽v信78792796】上城湖滨一夜情特殊qn 的搜索结果,共1518
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署况、实例运行状况如何? 2.我从哪里来? 游有哪些,不同的游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的套分布式的名字系统,是百度云Noah智能运维产品中的个重要基础系统。它为每赋予个独无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些息包括:在机器部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了名到资源息的个映射关系。
布****五 2018-07-10
如何执行条命令
面临的困难 命令行的三要素,也是如何执行条命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几万台机器每天执行几亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24时稳定运行,就不是件简单的事了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建个可靠的命令传输网络,使命令息在准确送达的前提下障传输的可靠与高效,毕竟百度的几万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
追****圣 2018-07-11
给书记省长讲清楚云计算
最后类是系统集成企业,这类厂商已经地方政企几年了。他们最大的优点和缺点都是为政府和国企为生,他们可以买技术搭建出云平台,但他们建好云平台的目的是再卖给本地政府和国企。这类企业需要完成从供应商到合作方的转变。 云计算不是万能药,它无法解决哪些问题。 在地方政企看来,云计算只是种商业形式,不能对它报以不切实际的期望值。 云计算行业不需要大量雇佣本地劳动力,无法解决大批就业问题;云计算核心员工会呆在线市远程操控,很难将云计算人才引进到当地。 云计算不会产生污染,所以不用考虑环减排问题,但其带来的环节能问题很严重,每个数据中心都会占用大量电力。 对于四线市政府和中型国企,因为现实困难资源有限是搞不了云计算的;二三线市和大型国企才能提供云计算公司感兴趣的资源。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是个体系化的,而ntpdate只是个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序壮性和业安全性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目任;假设个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的况,但业混乱是免不了的。
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景下,运维人员通常选择7*24时值班,接收大量的报警,随时准备在紧急况下进行响应、决策、操作系列故障止损动作,尽量挽回损失,降低故障影响。 但述解决方案会面临如下问题: 响应可能不够迅速:例如间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景下,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理过程,并及时向运维人员同步故障处理状态。运维人员的职责由处理转向管理,最终运维人员在低压力值班中稳定运行。
疏****月 2018-07-09
线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的点,我们已在数据传输文章《嗖的下,让数据自动生效》中专门讨论过)。般的业线具有不定时操作、业部署况复杂、单机启停策略复杂等点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了线部署系统——Archer。Archer致力于提供套产品线全过程的可迁移发布解决方案,实现键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全过程的自动操作。在操作方面,Archer提供了命令行工具作为发起线的操作入口,这种设计模式也决定了其易于集成的点。在DevOps流水线作业中,Archer可以作为个环节结合进整条测试发布流水线中。
流****水 2018-07-11
度云企业级运维平台——NoahEE
图胜千言,我们看看资产管理的点: 图3 资产管理 部署管理 应用部署直是运维工作中的重点,般来说,我们面临的问题有: 批量部署难,怎样定位目标机器?如何快速部署? 灰度测试难,怎样通过灵活的部署方式,先进行流量线测试,待效果达到预期后再扩大部署? 回滚难,发现问题后怎样回滚? 面的第个问题,实际管理中已经解决了,也就是说管理帮我们完成了资源定位工作。其他的问题,NoahEE的部署管理模块通过“分级发布”来解决。在部署管理模块中,我们可以方便的定义并发度、部署步骤、影响范围以及暂停操作等,在部署的过程中发现问题即可暂停并回滚至之前的状态。除了部署等操作,部署管理模块还提供了批量执行命令等操作(比如批量启停某)。如图来总结部署系统的能力: 图4 部署管理 监控管理 在任何工作里,息掌握的全面与否往往关乎到工作的成败。“知己知彼百战不殆”这句话说的就是这个道理。运维工作中,监控系统就是这个让我们做到这点的关键。软硬件是否工作正常,出了问题是否能及时发现与报警,甚至是对异常事件等进行提前预测,都仰仗监控系统。
小****园 2018-07-10
让PB级云存储不再神秘
个分布式系统中,客户端是可控可,可以知晓群集内其他状态,则群集设计会非常简单,可以做到所有组件都自动协商、自宣告状态、有序引导流量以及异常错误重试。 读写代理要访问元数据时可以看到主从库的选举结果,还可以从状态获取存储群集的自宣告息。它不会访问已经宕机的数据库,也不会往已满的存储内写入数据。自宣告的状态息总有意外时效的况,这没关系,局域网内重试速度很快的,客户感觉只是多了几毫秒延迟。 读写代理还可以将些读写策略、缓存策略写入自身配置属性,比如100k以下文件写到SSD存储池,优先写入新扩容存储器,某Bucket文件自动做异地复制,某后缀名的文件不缓存,某账户有API语法等等。 综所述,读写代理是元数据和存储系统的可控可可减负的好朋友好客户。 4、存储的硬功夫 存储在元数据和读写代理的护和调度下过滤了外部访问压力,每个节点都只关心存储本职工作就好。 对象存储群集内部存储可以分为四种,可四种混用也可只用两个。
M****H 2018-07-11
故障定位场景下的数据可视化实践
基于面的需求,可以总结为以下三个定位的层次,从整体到局部逐步缩故障范围,找到故障根因: 全局问题定位:快速确认线状态,缩故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建个全景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进步缩问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:况下,问题的根因需要借助除监控指标之外的数据进行分析。例如线变更、运营活动导致的故障。本文针对导致故障占比最高的变更线类故障进行分析,看如何快速找到可能导致故障的变更事件。 全景掌控缩范围 对于乃至条产品线而言,拥有个布局合理、息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控平台中,我们提供了款可定制化的、组件丰富的仪表盘。 用户可以根据征,自由灵活的组织仪表盘布局,配置所需要展示的数据息。
金****洲 2018-07-10
混乱的集群遇见TA 从此岁月静好
云计算历经多年发展,从最初的概念模型,到被大众熟知,再到现在全行业拥抱云,取得了巨大的进步。云的主要客户已从最初的中初创公司逐步渗透到各行各业的大型企业。可以说,企业云已是企业发展的必由之路。部分数据敏感的企业结合自身数据的安全性、所有权和控制权等综合因素考虑,会选择搭建自己的私有云或者混合云环境。 但是在述环境中,用户的机器都需要自行管理,这就必然给云运维人员带来很多意想不到的麻烦。 其实我们面临的问题从来就没有什么大的变化,唯不同的只是机器规模越来越大,人心越来越复杂。 Q如何在1台机器部署基础设施?A 切都源于那个亘古不变的道理:扔个文件到机器,然后跑个命令。 Q如何在10台机器部署基础设施?A 写个for循环搞定。 Q如何在10000台机器部署基础设施?A 这个也好办!定制操作系统镜像CUSTOM.iso装机自动化安装! then…… Q如何快速升级所有机器的基础设施? Q因异常挂掉,能自动重启活吗? Q公司做活动,预计流量突增,能扩容吗? Q公司活动结束,为节约成本,能缩容吗? Q新开发的基础设施有问题,能立马回滚吗?
p****d 2018-07-11
单机房故障自愈--运维的春天
如果安全水位线提供的容量不足以满足止损,那我们期望使用两条中间的容量buffer,同时流量调度过程中进行分步试探,避免次性调度压垮。 基于快速熔断的过载护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。 基于降级功能的过载护 在流量调度前,如果已经出现对应机房的容量过载况,则动态联动对应机房的降级功能,实现故障的恢复。 2业线止损策略需求差异大 【问题描述】 我们实现了基础的单机房故障流量调度止损算法,但在部分业线中仍存在较大的需求差异,比如: 分步动态调度需求:业存在充Cache的况,过程中能力降低,需要控制切换速度。 优先级调度需求:产品对延迟敏感,止损时需要优先切到同地域机房;业于多个游,多个游的重要程度不同,优先证重要稳定。 容量负载计算需求:请求成分不同,不同成分请求带来的容量负载不同。 这部分需求部分与业强相关,不具备通用性,另部分则存在不同产品线需求冲突的况。 【解决方案】 针对以问题,我们推出了故障止损流量调度策略开放框架。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
这个文件注释很简单但水很深,我们该用标签还是UUID来标识磁盘,文件系统自检功能要不要开,这都可以聊好几个时。 看看各的启动优先级也是个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招个研究这事的工程师,云确实也很有意义啊。 静人稀,沙子龙关好了门,气把六四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野店荒林的威风。叹口气,用手指慢慢摸着凉滑的枪身,又微微笑,“不传!不传!”----老舍《断魂枪》
M****点 2018-07-10
中国云计算现状——产品篇
SaaS产品已经出现并流行了几二年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是比各位读者从业年龄还长的老古董,最新流行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用云走公网和之前走内网区别并不大,用物理机和虚拟机区别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这点来看,这些SaaS只是云平台的普通用户,和游戏、网站、APP、没有区别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。 四、物理机-混合云-云管平台 云主机是物理机的最好替代方案,但也有各种物理机无法被替代的场景需要继续用物理机。 某些云主机的超卖比过高,性能太差,又因为各种原因不更换云厂商,那只能基于性能原因用物理机。 某些硬件性虚拟机还没模拟出来,或者你模拟了我也不,比如说Oracle RAC就偏爱硬件存储。 某些非TCP/IP资源必须接专用板卡,比如说接电话网络的器,接专用器材的器,接加密狗的器。
w****0 2018-07-11
单机房故障自愈-黎明之战
干货概览 在故障自愈机器人,你安心好睡眠文中,我们介绍了单机房故障自愈的必要性和解决思路。本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的全面故障发现能力 百度统前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有个实例或者多个实例全部部署在同物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来全局性影响。
TOP