关于 小妹保健服务_薇V:78792796广安广安区特殊服务服务游 的搜索结果,共749
h****e 2018-07-10
程序:我从哪里来?
为了证平台稳定和全的运行,需要对非法和异常请求进行拒绝,在流量接入层(Proxy)端提供了以下两个功能: 流量鉴权:每一个组、单元、实例的注册都需要进行权限验证,用户只有申请了合法的Token才能允许访问,另外系统还提供了白名单等其他的鉴权方式。 配额限流:针对产品线、用户、IP提供一定的配额,当请求的数量超过配额,就会拒绝响应的请求,并提示用户Quota超限。 2Web Server Web Server提供用户进行各类BNS变更的接口,承担了BNS系统的大部分写入流量,采用分布式多地域的部署方式,可以避免单实例、单机房的故障对可用性造成的影响。 3存储层 这里主要包含数据库和Cache层两个部分。 数据库:采用MySQL存储,采用主从集群部署、读写分离的方式。 Cache层:是BNS系统自研的一个缓存模块,缓存了全量的BNS系统数据,采用多地域部署的方式,它主要功能是降低数据库的查询压力。 4客户端 BNS系统主要包含两个客户端:查询客户端和康检查客户端,我们分别用Naming Agent和Check Agent来代指两个。
w****0 2018-07-11
单机房故障自愈-黎明之战
干货概览 在故障自愈机器人,心好睡眠一文中,我们介绍了单机房故障自愈的必要性和解决思路。本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的全面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例全部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来全局性影响。
M****点 2018-07-10
中国云计算现状——产品篇
SaaS产品已经出现并流行了十几二十年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是比各位读者从业年龄还长的老古董,最新流行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用上云走公网和之前走内网别并不大,用物理机和虚拟机别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这一点来看,这些SaaS只是云平台的普通用户,和戏、网站、APP、没有别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。 四、物理机-混合云-云管平台 云主机是物理机的最好替代方案,但也有各种物理机无法被替代的场景需要继续用物理机。 某些云主机的超卖比过高,性能太差,又因为各种原因不更换云厂商,那只能基于性能原因用物理机。 某些硬件性虚拟机还没模拟出来,或者你模拟了我也不信,比如说Oracle RAC就偏爱硬件存储。 某些非TCP/IP资源必须接专用板卡,比如说接电话网络的器,接专用器材的器,接加密狗的器。
红****2 2018-07-10
故障自愈机器人,心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
s****d 2018-07-11
亿元级云用户分析
降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和合同。 明确责任:客户不想承担各个IT系统的衔接和选型责任,相比软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:上云本身并不碰业数据,但上云是很好明确业数据存储位置的机会,上云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居思危,在困境危难之中穷极思变,IT技术是企业的潜在增长点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为上云目的分析。亿元以上的器、CDN的订单很多但既无技巧也无利润,这些资源厂商也在跟云厂商学习如何包装项目。 2.客户角色利益分析 大企业多角色之间的利益诉求不同,所以表现形式也不同。我将客户三大角色列出来讨论,销售-售前-项目经理铁三角组合明确客户的诉求,才更好刃有余的客户。 2.1业采购决策人 企业里CEO/COO/CFO或实权VP,他们不关注云产品云技术,更关注业上的求新图变,互联网决策人还会敏感IT成本。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
有个客户非常信任某个云销售,他告诉该销售,虽然某大云有高层合作,某大云也说报价肯定比某云低5%;但是某大云的机制有问题,出故障从来都是衙门话,每次故障都要客户去乱猜和背锅。最终这个单子在客户执行层的暗助之下,该云快速把业切过来并坐实站住了,这份暗中相助就是靠个人商誉带来的信任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。面对意外故障,我们有信心向客户证明,换了其他厂商也一样会挂;面对人为故障,踏实认错是对客户的最后尊重,而公开事实也是逼着内部不会重蹈覆辙犯同样的错误。 过去大家卖IDC、CDN、器和软硬件积累的个人商誉,是可以应用到云计算领域的。而云的高科技光环褪去、产品同质化以后,企业的核心竞争力仍然是有商誉的销售-售前-售后团队,这类人才永远是稀缺资源。 附录 请各位多琢磨评估本厂的云到底哪些组件是靠谱的,不要让信赖你的客户受伤又受骗。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固定的标准并且支持定制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线上故障 针对分级发布的使用场景,Archer支持串并行上线及暂停点功能,可按照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在定地域(机房)中生成定配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的上线在发起任后,部分代码将首先被转存至中转机上。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
本文聊个很有嚼头的技术问题,Linux系统的启动过程,当我们不用自己装系统以后,丧失了这么多乐趣。 正文 1.主板加电和硬件自检,就是开机第一屏启动界面。 CPU和内存插得有问题器会滴滴乱叫,而网卡和硬盘插不插都无所谓,因为这些外设都不属于经典的计算机系统。 早期内存器一般有内存检测的功能,但256G内存的器启动的速度也太慢了,重启一分钟能启动的还能恢复,重启三分钟可能群集性状就变了,所以我们经常顺手就把他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板大都是BIOS引导,也有是UEFI引导,但从器用户看别也不大。 主板可选从USB/SATA/NIC这几类接口上获取引导数据,而且可以排队式加载,第一个加载不成功就尝试第二个。系统装镜像都有个防止误操作的倒计时,而网络引导一般是排在末位,硬盘引导就是通用的系统启动的方式。 爱折腾桌面电脑的朋友从这一步开始就玩双系统/WINPE/U盘版Ubuntu/无盘工作站了,还好器维护人员比较单纯专一。 3.读取MBR(可略过)。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和全设备7x24时的运转,为我们的业提供了硬件障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了上面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、上架、机架变更,直到设备下架、出库全生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、上架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
1****2 2018-07-09
百度全:AI 是系统工程 需要真正开放的全护航
百度全最近发 布了OpenRASP 开源自适应全解决方案,护引擎集成在了应用内部,在应用完成协议解析后,才开始检测攻击。 这与传统的全防护解决方案有什么差别呢?首先,传统防护产品主要依赖请求 征,OpenRASP 是通过监控应用的执行逻辑和行为来实现防护;其次,OpenRASP 可 以实现应用的热补丁,比如可以永久免疫Struts 系列漏洞;最后,OpenRASP 实现了 编码规范检查、全基线检查,这也是传统防护产品无法实现的。OpenRASP 和KARMA 分别在云端和终端两侧为智能终端产品和提供自适应障能力。 未来的AI 攻防:需要真正的生态开放 AI 是一把双刃剑,用在全专家手里,能够更快、更高效地做好防御。将AI 用于 全领域,在感知层可以提升用户体验,认知鉴权由“知”(密码)、“有”(U 盾) 到“是”的转变;在执行层,AI 可以提升全攻防对抗的能力,无论是网络空间全 还是业全;在战略层,全专家角色实现由人到机器的转变,AI 自主进行攻防对 抗。而将AI 用在黑客手里,就可能造成“永恒之蓝”那样席卷全球的灾难。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序壮性和业全性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。我们就说联机调试分布式日志,几个节点的时间有错可能日志就看不懂了。
追****圣 2018-07-11
给书记省长讲清楚云计算
但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到全国。这个窗口期只有三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些点。 前文说的为何要引凤,如何算筑巢。当云厂商看到商机肯合作时,我们要掌握各类云厂商的点才能心里有数。 第一类是大型云厂商,他们自身有很强的资源整合能力和执行销售能力。地方政企和这类企业合作的话语权很弱,但极风险就能看到收益。 第二类是创业云厂商,他们一般是靠技术优势和态度从大型云企手里抢单子。地方政企和这类企业合作时有很强的议价能力,注意不要盲目倾向技术优先的创业云厂商,而是选择态度和执行能力好的创业云厂商。地方政企很难确切搞懂厂商的技术有哪些优势,而项目的推进落地都是要靠云厂商来执行的。 第三类是外企云厂商,这类厂商是被广阔的中国市场吸引过来的,也有兼顾外企中国分部的客户。这类厂商在国内发展都不太顺,和他们沟通主要看他们有什么合作诚意,是否穷极思变。 最后一类是系统集成企业,这类厂商已经地方政企几十年了。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
做合格产品经理性价比不高 要成为合格的产品经理,必须有多年IT技术工作经验,既能胜任客户侧的技术顾问,又能在自己团队做个架构师,还要能做市场外宣,同时要抑制住自己折腾的心,还不能在静积累期被人指责和埋没。 ToB产品经理的岗位需求太少、对人的要求太高、出业绩太难,又难有超高收益,为什么不踏踏实实的继续做团队管理、做研发售前、做解决方案? 如果你的团队运气好,遇到一个合适的产品经理,请容忍他短时间不出活,请容忍他拒了客户需求,请容忍他给研发添工作量,因为合格的产品经理要背负和团队负责人一样大的选型责任,他名字叫产品经理,但本质上是软件和设计师。
p****d 2018-07-11
单机房故障自愈--运维的春天
容量护模式:针对固定比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充足,容量充足则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量护的情况下进行尽可能的调度,减少对用户的影响。 2.即使按照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完全可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 全水位线:流量处于在全线以下则风险较,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。 如果全水位线提供的容量不足以满足止损,那我们期望使用上两条中间的容量buffer,同时流量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。
布****五 2018-07-10
如何执行一条命令
监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进程状态/系统状态等(如使用grep提取日志,通过ps查询进程状态,通过df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都有一个共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。 面临的困难 命令行的三要素,也是如何执行一条命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器上每天执行几十亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。
若****客 2018-07-10
IT架构的本质--我的五点感悟
架构师将一个无脑大事拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。比如数据压缩技术就是用算力资源来置换IO和空间,缓存技术是用空间和IO来缓解算力压力,每个新选型都会带来细节上的万千变化,但每种变化都是符合自然规律有章可循的。 一个经典微机系统就是中央处理器+主存储器+IO设备,这几个概念居然和群集性能规划是一一对应。 3. 理解硬件天性 角色选型时要看硬件的天然性 别让硬盘扛性能,别让内存持久,别让网线扛稳定。 架构层软件技术已经足够成熟,所谓技术选型不如说是适应场景;在做具体角色选型时,最深度也最易忽视的原则是顺应硬件天性。 我的精神导师说过,如果一个依赖硬盘,那这个就不适合扛性能压力。我经常将读写引到/dev/shm;SSD盘让很多细节调优聊胜于无,还让Fat32枯木逢春;个别队列和分布式存储在意硬盘的性能力,但都是应用了顺序读写内容,且不介意磁盘空间浪费。
TOP