关于 小妹保健服务_v信78792796嘉定按摩上门成 的搜索结果,共980
h****e 2018-07-10
程序:我从哪里来?
Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器的Check Agent会主动探测所有实例的运行状况,并将康检查的结果报给Cache层,同时更新数据库内容。 总结 BNS系统满足间交互中常见的的资源位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从哪里来?该往哪里去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎大家积极留言。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
我们很难功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背黑锅了。 真有TOP10的互联网公司和亿国家级项目里用ntpdate+crond,一代架构师为什么有这个误会无人深究,下一代人将误会固化为偏见,新一代人将偏见神化为迷。 但无论误会、偏见还是迷,时间跃变、回退和停滞对应用壮性和业安全性的威胁始终存在,时间不仅仅是我玩游戏时用的魔法,忽视问题并不能掩埋问题。 六、见微知著和防微杜渐 我讲NTPD和裸纤并不是为卖弄知识,也不是为做偏科普,而是希望进阶工程师们多考虑一下如何规避这类误会?我们在做技术工作时,是不是只关注客户和同事能提出的需求?客户永远不知道裸纤的物理特性,同事也不会知道时间也能错误和波动,他们能说清楚业逻辑就不错了。 把所有的精力都用到做业逻辑,你只是个编程语言翻译机而已;自己主动观测技术环境依赖,有资格有能力做出技术选型决策,才是给Coder群集做技术校准的人。即使你不想做技术决策人和管理者,多怀疑和观察环境,也能少些沟通本,少走一些冤枉路,多一份自和自尊。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固的标准并且支持制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线故障 针对分级发布的使用场景,Archer支持串并行线及暂停点功能,可照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特地域(机房)中生配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的线在发起任后,部分代码将首先被转存至中转机
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自义SLA标准——大部分API云连等待超时都没义。 版本发布和数字化转型——无论是微观的版本发布还是宏观的数字化转型,其实都和云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集商。
M****点 2018-07-10
中国云计算现状——产品篇
最常见的PaaS是数据库,最重要的PaaS是对象存储,最熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不任云端未知架构数据库的性能、稳性和数据安全性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没大规模对象存储搭建能力,而且对象存储对应用程序友好手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了TB的数据,大数据和AI分析应用自然就部署来了。广域网传输稳性不够本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展空间。 大数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,大数据PaaS都用IaaS制模板虚拟机了。
流****水 2018-07-11
度云企业级运维平台——NoahEE
简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例子。这个例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一条件达时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。 资产管理 在机房里,各种各样的器、网络设备和安全设备7x24时的运转,为我们的业提供了硬件障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录息,是个很重要的问题,搞得不好,这些资产可能变运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复?
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
运维人员的职责由处理转向管理,最终运维人员在低压力值班中运行。 单机房故障自愈解决方案概述 百度AIOps框架中,单机房故障自愈解决方案构建在运维知识库、运维开发框架、运维策略框架三个核心能力之。具体过程为自愈程序搜集分散的运维对象状态数据,自动感知异常后进行决策,得出基于动态编排规划的止损操作,并通过标准化运维操作接口执行。该解决方案策略和架构解耦,并且托管到高可用的自动化运维平台之,实现了业在任意单个机房故障情况下皆可自愈的效果。 截至目前该方案已覆盖百度大多数核心产品,止损效率较人工处理提升60%以。典型案例: 在8月28日某产品在单机房故障发生后1min55s完止损。 在后续文章中我们会继续介绍单机房故障自愈的更多详细内容,敬请期待! 单机房故障容灾能力的建设 在容灾能力建设中有哪些常见问题? 如何证明已经具备单机房容灾能力? 单机房故障人工止损方法 人工止损时如何感知故障? 人工止损时如何收集故障息? 人工止损时如何进行流量调度? 单机房故障机器人止损方法 如何设计单机房故障自愈整体方案? 如何降低流量调度风险?
布****五 2018-07-10
如何执行一条命令
可是如果要在几十万台机器每天执行几十亿条命令,同时证时效性,证执行功率,证结果正确收集,证7*24时稳运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令息在准确送达的前提下障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
p****d 2018-07-11
单机房故障自愈--运维的春天
比例模式:照预先设的固预案,一个机房故障,该机房的流量照预先设的比例分配到其他的机房。很可能某个机房的容量或剩余机房的总容量不足,切流量后导致多个机房发生故障。 容量护模式:针对固比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充足,容量充足则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量护的情况下进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一误差,流量分的变化以及变更等导致的容量退化,都可能导致原先容量无法完全可。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安全水位线:流量处于在安全线以下则风险较,可以一步进行切换。 水位限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。
追****圣 2018-07-11
给书记省长讲清楚云计算
器就是高功耗高价格的专业电脑,云计算企业的采购规模一般远大于政企集采,他们能从硬件厂商那里拿到极限低价,政府和国企能提供的更多是采购资金的支持。 云计算是一个商业,不仅需要硬性支持,还需要足够的环境和政策支持。当前云计算公司聚集在一线大城市,环境规范稳本极高竞争压力极大,云计算企业也在尝试向二三线转移突围。二三线城市不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线城市对互联网还只是简单的管控,稍有不解可能就会封禁一大批互联网,但一道封网命令就可以毁掉一个云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络驾护航。 前几条都是从降低本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动寻求合作。
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也无法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造多个机房故障,造更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固IP或固机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间无法进行快速的流量调度止损。 要求:线关联不允许使用固IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。
小****园 2018-07-10
让PB级云存储不再神秘
法律合同能震慑平台的一部分动作,但计费统计数据云平台还是会拿到,客户可以考虑多分几个供应商多做几个存储池。 4、何时选择私有云 对象存储一般是公有云,但是超大型国企、电运营商、国家级项目、大型独立互联网企业、金融行业、智慧城市、基因、气象、医疗等行业都因特原因使用私有云存储。 对象存储适用于私有云主要基于这三方面考虑: (1)建设本 公有云建设本有三大头,器、IDC和公网带宽。公有云对比对中型客户在这三方面本有巨大优势,但也给自己留了利润空间。很多客户能拿到比云厂商更低价格的资源,那可以拿掉给云平台留的利润,自建私有云存储。 (2)网络通本 这里提的网络通讯本和前文的公网带宽并不重复,公网带宽是面向分散的广域网客户的,网络通讯本是强调几个固的大带宽消耗对象。假设你某个应用的数据读写速度是10Gb/s,云存储和客户端两侧的广域网带宽本是巨大的,某些弱势运营商甚至要考虑网间结算费用。大读写速率的客户端和云存储会是固长期合作关系,无论是内网互联、同IDC光纤、同城专线的本都比互联网通讯的本低很多。
金****洲 2018-07-10
混乱的集群遇见TA 从此岁月静好
云计算历经多年发展,从最初的概念模型,到被大众熟知,再到现在全行业拥抱云,取得了巨大的进步。云的主要客户已从最初的中初创公司逐步渗透到各行各业的大型企业。可以说,企业云已是企业发展的必由之路。部分数据敏感的企业结合自身数据的安全性、所有权和控制权等综合因素考虑,会选择搭建自己的私有云或者混合云环境。 但是在述环境中,用户的机器都需要自行管理,这就必然给云运维人员带来很多意想不到的麻烦。 其实我们面临的问题从来就没有什么大的变化,唯一不同的只是机器规模越来越大,人心越来越复杂。 Q如何在1台机器部署基础设施?A 一切都源于那个亘古不变的道理:扔一个文件到机器,然后跑一个命令。 Q如何在10台机器部署基础设施?A 写个for循环搞。 Q如何在10000台机器部署基础设施?A 这个也好办!制操作系统镜像CUSTOM.iso装机自动化安装! then…… Q如何快速升级所有机器的基础设施? Q因异常挂掉,能自动重启活吗? Q公司做活动,预计流量突增,能扩容吗? Q公司活动结束,为节约本,能缩容吗? Q新开发的基础设施有问题,能立马回滚吗?
M****H 2018-07-11
故障位场景下的数据可视化实践
基于面的需求,可以总结为以下三个位的层次,从整体到局部逐步缩故障范围,找到故障根因: 全局问题位:快速确认线状态,缩故障判范围。为可能的止损操作提供判断依据。本文会介绍如何构建一个全景分析仪表盘。 细分维度位:通过分析地域、机房、模块、接口、错误码等细分维度,进一步缩问题范围,确需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的位难题。 故障根因确认:一些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如线变更、运营活动导致的故障。本文针对导致故障占比最高的变更线类故障进行分析,看如何快速找到可能导致故障的变更事件。 全景掌控缩范围 对于一个乃至一条产品线而言,拥有一个布局合理、息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控平台中,我们提供了一款可制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据息。
若****客 2018-07-10
IT架构的本质--我的五点感悟
架构师将一个无脑大事拆分多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完补不足而损有余的选型。比如数据压缩技术就是用算力资源来置换IO和空间,缓存技术是用空间和IO来缓解算力压力,每个新选型都会带来细节的万千变化,但每种变化都是符合自然规律有章可循的。 一个经典微机系统就是中央处理器+主存储器+IO设备,这几个概念居然和群集性能规划是一一对应。 3. 理解硬件天性 角色选型时要看硬件的天然特性 别让硬盘扛性能,别让内存持久,别让网线扛稳。 架构层软件技术已经足够熟,所谓技术选型不如说是适应场景;在做具体角色选型时,最深度也最易忽视的原则是顺应硬件天性。 我的精神导师说过,如果一个依赖硬盘,那这个就不适合扛性能压力。我经常将读写引到/dev/shm;SSD盘让很多细节调优聊胜于无,还让Fat32枯木逢春;个别队列和分布式存储在意硬盘的性能力,但都是应用了顺序读写内容,且不介意磁盘空间浪费。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
大客户在吃够了厂商的亏以后,会选择任能有个人商誉,能做出承诺、调动资源和平复问题的销售和人员。 有个客户非常任某个云销售,他告诉该销售,虽然某大云有高层合作,某大云也说报价肯比某云低5%;但是某大云的机制有问题,出故障从来都是衙话,每次故障都要客户去乱猜和背锅。最终这个单子在客户执行层的暗助之下,该云快速把业切过来并坐实站住了,这份暗中相助就是靠个人商誉带来的任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。面对意外故障,我们有心向客户证明,换了其他厂商也一样会挂;面对人为故障,踏实认错是对客户的最后尊重,而公开事实也是逼着内部不会重蹈覆辙犯同样的错误。 过去大家卖IDC、CDN、器和软硬件积累的个人商誉,是可以应用到云计算领域的。而云的高科技光环褪去、产品同质化以后,企业的核心竞争力仍然是有商誉的销售-售前-售后团队,这类人才永远是稀缺资源。 附录 请各位多琢磨评估本厂的云到底哪些组件是靠谱的,不要让赖你的客户受伤又受骗。
TOP