关于 常州兰陵那有妹子上门一条龙服务〖微信11415559〗 的搜索结果,共1754
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示的实例集合,般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯的。 使用场景 在程序员的日工作,面临以下的场景: 场景 场景:我是名OP工程师,负责几十个系统模块的运维,我需要登录部署的机器排查问题,但是只知道名,记不住么多部署息,怎么办? 场景二:我是名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容怎么通知给下游模块? 场景三:我的部署实例个出现故障了,我想对下游屏蔽该故障实例,怎么办? 下面以个简单的例来说明,假设个模块名是Server,它的游是Proxy,下游是Redis,当出现变更或者故障时,如何让游感知到呢? 当新增线实例、下线摘除实例或者实例发生故障时,BNS系统通过部署在机器的客户端实时感知到实例的状态变化,同时新增和删除实例的变更情况会立即同步到分布式的缓存系统中,这样用户通过个BNS名字就可以感知到下游的实例变化。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
我们很难成功调试NTPD,会装NTPD又没会装LAMP可以拿去吹牛,时间长了NTPD就背黑锅了。 真TOP10的互联网公司和亿国家级项目里用ntpdate+crond,代架构师为什么这个误会无人深究,下代人将误会固化为偏见,新代人将偏见神化为迷。 但无论误会、偏见还是迷,时间跃变、回退和停滞对应用健壮性和业安全性的威胁始终存在,时间不仅仅是我玩游戏时用的魔法,忽视问题并不能掩埋问题。 六、见知著和防杜渐 我讲NTPD和裸纤并不是为卖弄知识,也不是为做偏科普,而是希望进阶工程师们多考虑下如何规避这类误会?我们在做技术工作时,是不是只关注客户和同事能提出的需求?客户永远不知道裸纤的物理特性,同事也不会知道时间也能错误和波动,他们能说清楚业逻辑就不错了。 把所的精力都用到做业逻辑,你只是个编程语言翻译机而已;自己主动观测技术环境依赖,资格能力做出技术选型决策,才是给Coder群集做技术校准的人。即使你不想做技术决策人和管理者,多怀疑和观察环境,也能少些沟通成本,少走些冤枉路,多份自和自尊。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招个研究这事的工程师,云确实也很意义啊。 夜静人稀,沙关好了小气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野店荒林的威风。叹口气,用手指慢慢摸着凉滑的枪身,又笑,“不传!不传!”----老舍《断魂枪》
布****五 2018-07-10
如何执行命令
面临的困难 命令行的三要素,也是如何执行命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器每天执行几十亿命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24小时稳定运行,就不是件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例如下: 息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建个可靠的命令传输网络,使命令息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
追****圣 2018-07-11
给书记省长讲清楚云计算
二三线城市对互联网还只是简单的管控,稍不解可能就会封禁大批互联网,但道封网命令就可以毁掉个云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正,甚至主动出击为正网络保驾护航。 前几都是从降低成本可靠的角度请云计算企业来合作建厂,如果你市场客户对方会主动寻求合作。从长周期来看云计算的客户是覆盖全球全行业的,各地内部采购的计算机项目根本不值提,市场和客户要靠云计算厂商自己去找。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,旦摸出来案例会迅速推广到全国。这个窗口期只三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商哪些特点。 前文说的为何要引凤,如何算筑巢。当云厂商看到商机肯合作时,我们要掌握各类云厂商的特点才能心里数。 第类是大型云厂商,他们自身很强的资源整合能力和执行销售能力。地方政企和这类企业合作的话语权很弱,但极小风险就能看到收益。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非频繁的发生。 在实际的运维中,还更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例。这个例中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加些指标采集任,并在件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持见协议,还底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目任云厂商。客户精力就做多云冗余校验,预算就做专资源池部署;未来云厂商还会自定义SLA标准——大部分API云连等待超时都没定义。 版本发布和数字化转型——无论是观的版本发布还是宏观的数字化转型,其实都和云没直接联系,个是室内装修工作,个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即云端IT资源,也平台输出。是个比资源更难量化的概念,我只引把火苗出来。 咨询规划--如果直接给客户买资源,就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。
疏****月 2018-07-09
线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的下,让数据自动生效》中专讨论过)。般的业线具不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了线部署系统——Archer。Archer致力于提供套产品线全过程的可迁移发布解决方案,实现键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全过程的自动操作。在操作方面,Archer提供了命令行工具作为发起线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为个环节结合进整测试发布流水线中。
小****园 2018-07-10
让PB级云存储不再神秘
只做入识级系统优化,没用专用文件系统也没写裸设备,据说每个节点50%的性能优化余地。 整体结构可以简化到不需要画架构图的地步,群集几十个功能项,你想合并成几个也行,想分成几十个进程也对。 因为超高的容错性,所以群集自协商机制比较简单,嗯,应该说是简陋。 我们不买高配器,因为我们的技术是做公云过来的,公云定价不看成本只看友商的价格,合理花钱才能生存下去持续;我们不做单点极限性能优化,是招不到架构师才走的歪路。这是最性价比最实的架构方案,我们练得是招致命的杀敌功夫,不是翩若惊鸿的表演性武术。 个基于http对象存储的架构场景三个主要角色:读写代理、元数据、存储。 读写代理,客户端直接访问的Web server,它不存数据只是代理。 元数据,客户可见的Metadata息和不可见的Filehandle等息都在这里。 存储,实际数据落盘在这些不同的存储形式。 此外还些辅助角色,简单列下但不细聊了。 客户端SDK,简化客户访问,还能做些容错遮蔽。 群集状态同步,99%类似Zookeeper。
TOP