关于 平果县酒店上门找小姐服务〖8843O306VX〗服务真实衅敬凑 的搜索结果,共1188
h****e 2018-07-10
程序:我从哪里来?
通过部署在机器的客户端感知到例的状态变化(比如例状态由0变成-1,即正常变成非正常),并将数据同步到系统中的分布式缓存,游模块可以通过查询redis.noah.all的例状态结,主动过滤非正常的例,也可以在BNS系统中发起屏蔽故障例的操作,在查询过程中会自动过滤该故障例。 在下一节中将具体介绍BNS系统的整体架构。 基本架构 BNS系统主要包含几个部分:流量接入层,Web Server,存储层,代理客户端。 作为一个底层的基础,BNS系统每天的访问量近千亿次,这对系统的可用性提出了很高的要求,因而系统需要在各个层面有完善的容灾能力和流量管控能力。 1流量接入层 系统通过HTTP接口对外提供变更,用户通过Web页面或者接口进行例信息注册。为了保证台稳定和安全的运行,需要对非法和异常请求进行拒绝,在流量接入层(Proxy)端提供了以下两个功能: 流量鉴权:每一个组、单元、例的注册都需要进行权限验证,用户只有申请了合法的Token才能允许访问,另外系统还提供了白名单等其他的鉴权方式。
w****0 2018-07-11
单机房故障自愈-黎明之战
对于单机房止损场景来说,DNS流量调度的生效时间较层、依赖层的流量调度生效时间要慢很多,所以我们期望在发生某个业的局部单机房故障时,优先进行层、依赖层调度。提升止损时效性。 在单机房容灾能力、智能监控台、流量调度台的基础,启动单机房故障自愈工作的时机已经成熟。我们将会在下篇文章中详细介绍单机房故障自愈解决方案,请期待! 单机房故障机器人止损方法 单机房故障止损的能力标准 单机房故障自愈的常见问题 单机房故障自愈的解决方案
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
运维人员的职责由处理转向管理,最终运维人员在低压力值班中保证稳定运行。 单机房故障自愈解决方案概述 百度AIOps框架中,单机房故障自愈解决方案构建在运维知识库、运维开发框架、运维策略框架三个核心能力之。具体过程为自愈程序搜集分散的运维对象状态数据,自动感知异常后进行决策,得出基于动态编排规划的止损操作,并通过标准化运维操作接口执行。该解决方案策略和架构解耦,并且托管到高可用的自动化运维台之现了业在任意单个机房故障情况下皆可自愈的效。 截至目前该方案已覆盖百度大多数核心产品,止损效率较人工处理提升60%以。典型案例: 在8月28日某产品在单机房故障发生后1min55s完成止损。 在后续文章中我们会继续介绍单机房故障自愈的更多详细内容,请期待! 单机房故障容灾能力的建设 在容灾能力建设中有哪些常见问题? 如何证明已经具备单机房容灾能力? 单机房故障人工止损方法 人工止损时如何感知故障? 人工止损时如何收集故障信息? 人工止损时如何进行流量调度? 单机房故障机器人止损方法 如何设计单机房故障自愈整体方案? 如何降低流量调度风险?
M****点 2018-07-10
中国云计算现状——产品篇
客户没有对接成本,可以随时更换其他云厂商,或默认即使用多个云厂商,普通项目不需要高级售前、解决方案和质性定制开发。 客户只关注价格和质量两个维度,不用承担太多选型责任,大不了切走就行,甚至有专的中立CDN监测的台。 虽然业内对CDN生意评价不高,认为这就是卖资源,但每个云台都将CDN收入列为重要单项,成熟的模式催熟了巨大蛋糕。 关于Serverless的介绍,我建议大家搜一下ZStack张鑫的那篇文章。Serverless的之处在于要求程序为自己进行改造,其他强调按需付费的计算只是快速释放资源的把戏,Serverless才是正的计算能力集装箱,未来计算场景下的CDN。 三、SaaS产品 其SaaS产品和狭义的云计算没一毛钱关系,广义的云计算连设备租赁和人员外包都能算进去吹水框架,自然也给SaaS云预留了位置。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为托管台的底层工具链,为PaaS台提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线故障; 业的多地域部署; 多种网络环境及大包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合面场景,向大家介绍百度持续部署是如何现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行际任。涉及大包及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一套既灵活又完整的包规范。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
这个验里坑很多,个人要和时间赛跑才能完成验,我做了8次验成功了3次,每次都等了10分钟以。这个验也不够严谨,我只是拿crond做验,我在梦里记得其他有历史守规矩的程序也能和ntpd联动,但我没时间做验了,也希望有朋友能帮我答疑解惑。 附录2:网到一个写NTPD和ntpdate的水文和本文内容有些类似,那个是我多年以前写的,不是借鉴和抄袭,严肃脸。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的套路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收亿的,但定个1000万的目标是能现的;如有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损千万。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
但是从云资源的管理、调度、监控软件,到客户界面,API管理、账户和后台策略层面,越往走的软件质量还不如XXXX,此处省略一万五千字,客户自己揣摩吧。 厂商深层原因 厂商报故障就跟滚刀肉挨揍一样,脸疼了就把屁股过来,屁股疼了就捏捏脸,一般不会按住一只羊使劲薅羊毛,毕竟云报障也要负载均衡。但客户自己心里要有秆秤,厂商究竟是偶尔发挥失常还是烂泥扶不墙,故障的性质对长久的品质很重要。 我列一下潜在的故障原因,哪些故障能忍,哪些故障不能忍,这些要云客户自己评估了。 技术原因 IaaS的核心主体功能(云主机、云硬盘、VPC),在没有特型要求前提下,是可以用开源方案搭建。如是云厂商连个开源台标准模块都部署失败,那就该换厂商了;如是偶发的BUG,那确客户要自认倒霉,因为友商也会遇到同样问题。 现在容易出问题的是云台的运营维护和云厂商的自定义管理模块,客户就是缺合格运维才被逼的云台,但云厂商自己也缺人;在软件BUG这一部分我已经吐槽过做云台外延模块程序员的技能水了。这些地方出了问题该投诉投诉、该索赔索赔,逼着客户去招更业专业的工程师。
流****水 2018-07-11
度云企业级运维台——NoahEE
在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例子。这个例子中,地图研发的同学就可以在运维台中选中导航的模块进行升级,运维台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
m****t 2018-07-11
设计中立公有云云管
云厂商提供OSS+CDN的好处就是内网互通节省带宽费用,但大客户很可能越过云管台直接采购,客户一年可能只节省几十块钱。云管台要集成OSS和CDN时,一定要注意这两个是没有区域概念的,比如客户用了百度北京的虚拟机加七牛浙江的云存储和阿里全国的CDN,此时客户业绝对跑的通,三方互通有额外网络开销。云管台的资源创建和计费系统都要考虑清楚,尽量资源走一个供应商,或要求不同供应商之间相互免费。 述PaaS资源都有一个特点,可以按照使用量付费,或者提供贴合到业逻辑操作层面的支持功能,那也就代表着客户的计费访问数据铁定会被供应商拿到,而业数据是否被偷窥要看供应商自律。 我们再看看下文一些更专业(偏)的。 容器云入槛太高,在中客户场景下缺乏成功案例,如没有具体项目要求容器云,就等到接完面的PaaS再考虑接入容器云。 反DDOS攻击只能由云厂商提供,因为开销偏大计费不灵活,但又没有日常管理需求,客户到云管台到厂商沟通时直接用邮件、工单和合同即可,如没有频繁攻击和检测需求,可以不留展示界面只用邮件通知。
w****t 2018-07-10
AIOps中的四大金刚
在AIOps落地施中,运维工程师是处于中心的角色,也赋予了新的职责,他们是AIOps具体施的需求提出者和成验收者。具体职责包括: 在AIOps时代,运维工程师一方面需要熟悉运维领域的知识,了解运维的难题和解决思路;另一方面需要了解人工智能和机器学习的思路,能够理解哪些场景问题适合用机器学习方法解决,需要提供怎样的样本和数据,即成为AI在运维领域落地施的解决方案专家。 运维AI工程师 在单机房故障自愈场景中,运维AI工程师将机器学习的算法与际的故障处理业场景相结合,针对单机房故障场景的风险点,进行策略研发与验工作。如下图所示: 运维AI工程师分别设计了如下算法策略来满足整个复杂故障场景的自动决策: 异常检测算法:解决故障发现时指标异常判断问题,基于AI方法现较高的准确率和召回率,作为整个故障自愈的数据基础。 策略编排算法:基于当前线际流量和状态,设计损益计算模型,判断基于何种方式的操作组合或步骤,能够使整个自动止损带来收益最大,风险最。 流量调度算法:基于线容量与时流量情况,进行精确流量比例计算,防御容量不足或不准风险,并现流量调度收益最大化。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
布****五 2018-07-10
如何执行一条命令
可是如要在几十万台机器每天执行几十亿条命令,同时保证时效性,保证执行成功率,保证结正确收集,保证7*24时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 信息存储问题:为了支持水扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确定何时分发命令、何时回收结以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
追****圣 2018-07-11
给书记省长讲清楚云计算
二三线城市不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线城市对互联网还只是简单的管控,稍有不解可能就会封禁一大批互联网,但一道封网命令就可以毁掉一个云计算公司的声誉。如当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络保驾护航。 前几条都是从降低成本可靠的角度请云计算企业来合作建厂,如你有市场有客户那对方会主动寻求合作。从长周期来看云计算的客户是覆盖全球全行业的,各地内部采购的计算机项目根本不值一提,市场和客户要靠云计算厂商自己去。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到全国。这个窗口期只有三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 前文说的为何要引凤,如何算筑巢。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招一个研究这事的工程师,云确也很有意义啊。 夜静人稀,沙子龙关好了,一气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
小****园 2018-07-10
让PB级云存储不再神秘
最后一条就是有些领先大厂直接压制,故意做技术无关的不兼容、甚至拒绝、甚至从其他层面正面打压业。这里就不举例了,太明显针对单一厂商。如只是技术不兼容那算和其他云台恶意竞争,如到了云台明抢客户自身业的阶段,技术采购决策人请把风险告知公司决策层,该妥协还是硬扛不是你的职责范围。 3、大型用户谨慎选型 大型用户即使只存储1PB,每年也要花100多万了;中型客户只要做选型,而大项目不仅要选型和定制,还有更多技术以外的东西要考量。 首先同样说价格问题,大型客户比中客户更难办,客户是嫌价格贵,大客户却怕低价砸场。云存储不能违背商业的本质,甲方没蠢到敢让乙方赔钱做,但采购决策层更喜欢看谁的报价最低。数十PB的数据云后基本下不来,台方无论是提价还是降速,有的是追加预算的手段;如对方是赔本卖吆喝,成功了就会甩开这个包袱,失败了就直接倒闭。我谈PB级存储项目时,我很愿意分享不同底层技术带来的际成本构成,为什么同样的价格我们还能挣钱而友商已经在贴钱,相关内容会在第四章节详细说明。 成功案例是很重要的决策依据,但这个依据很难考证性。
x****7 2018-07-10
从外行进阶专业 传统企业AI转型差的可能只是一个百度EasyDL
说,源创是用AI改造存量,那么,更年轻的惠合科技则用AI创新了: 这家2016年成立于杭州的创业公司,主要为大量快消品牌定制整合性营销解决方案,过去两年,惠合科技推出了“e佳”陈列审核方案,接入百度AI定制化图像开放台技术后,建立了产品的图象识别库,现图象快速采集,标注并建立模型,将传统零售商品陈列审核方式智能化。 2018年1月起,惠合科技从台抽取3000家零售,作为陈列审核的首次尝试,线下渠道只需手机传视频,“e佳”就可轻松识别出陈列商品是否符合规范,准确率在90%以,极大提升审核的效率,人员效率提升超过30%,其后将方案应用于40000家零售,帮助合作品牌商营销费用下降27%、销售额提升15%。 “我们和百度一起合作,现可即用、更轻快、高精度、强安全的特点,帮助品牌商提升了执行效率。”惠合科技CEO郑云帆表示,公司已准备与品牌商联手,扩大“e佳”方案的使用范围。 事百度EasyDL每一次开放新的能力,就会有一批嗅觉敏锐的企业迅速跟进,新的创新案例层出不穷。
TOP