关于 建湖找妹子上门全套服务【微5⑤008719】 的搜索结果,共877
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 游有哪些,不同的游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力设中遇到的常见问题及解决方法 基于网络故障及业故障场景的面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来局性影响。同时流量调度也无法使得恢复正常。
追****圣 2018-07-11
给书记省长讲清楚云计算
所述,云计算就是将分散在各个公司的信息技术资源汇聚到一个大平台,其兴起始于需求扩大而人力短缺,其未来发展趋势是通过规模经营和数据共享,成为新型信息化社会的技术基石。 云计算如何带动地方经济 云计算落地是要自数据中心机房,我们一般称之为云基地,云基地在经济利益和社会影响和传统工厂并不相同。云基地通俗易懂的展现形式就是开启数十万个高速运转的电脑铁皮箱,但这些电脑不用接显示器也不用人员现场操作,只要这些电脑能开机能网就能对外。云基地和数字地产不完相同,数字地产只装修好房,云基地关注用这些房做什么。 云基地是无烟工业,并不需要雇佣大量人口,对直接促进就业帮助不大;但云计算没有实体矿产投入和物品产出,只需要大量电力启动电脑也不会产生大量污染。 云基地像电视台和信号塔一样,通过产生和扩散数据信息对客户提供,这些信息的传输没有物流成本,光速直达球每个角落。 因为云基地球客户,所以云基地可创造极高的营收,但不能简单的计入地方政府的GDP。一个耗电三千瓦的机柜加附属空间占地5平方米,如果云计算资源部售出,每年可产生20万元以的营收。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目信任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自定义SLA标准——大部分API云连等待超时都没定义。 版本发布和数字化转型——无论是观的版本发布还是宏观的数字化转型,其实都和云没直接联系,一个是室内装修工作,一个是新房屋工作,但装修的最好时机是房屋重的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭州电信接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
流****水 2018-07-11
度云企业级运维平台——NoahEE
管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几台甚至一台机器,进行变更等运维操作简单直接,登录到机器人工操作就好了。随着业的发展,分布式应用与的广泛使用,我们越来越多的面临着运维场景与运维执行之间的脱节。 举个例,今天17:00开始对X机房的地图导航模块进行升级。对于产品研发的同学来说,关注点是语义明确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在哪里。在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
附录2:网到一个写NTPD和ntpdate的水文和本文内容有些类似,那个是我多年以前写的,不是借鉴和抄袭,严肃脸。
p****d 2018-07-11
单机房故障自愈--运维的春天
干货概览 在单机房故障自愈--黎明之战中,我们介绍了单机房故障自愈的准备工作和基础设施,包括容灾能力设、监控平台以及流量调度平台。本篇主要介绍单机房故障自愈的具体解决方案,内容包括: 单机房故障止损的能力标准 单机房故障自愈的整体架构 单机房故障自愈的常见问题和解决方案 单机房故障止损的能力标准 在单机房容灾能力、故障发现能力、流量调度能力基础,业线具备了通过流量调度进行单机房故障止损的条件。理想情况下,我们希望构完整、自动、智能的自愈方案,但各个业线的特点不同和基础能力参差不齐,很难一蹴而就,所以我们立起一自愈能力的等级标准,业线根据自身情况制定相应设计划,逐步提升自愈能力。 自愈能力等级标准划分为5级,从Level 0的完人工止损,到Level 4的自动化、智能化止损。对于Level0、Level1,人工感知止损面临着速度慢、误操作、场景覆盖不、风险控制能力不足等问题;、Level2则实现了止损操作的平台化、预案化,一定程度提升了止损效率;Level3则实现了自动化报警联动故障止损,实现了止损效率的进一步提升。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招一个研究这事的工程师,云确实也很有意义啊。 夜静人稀,沙龙关好了小,一气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又一笑,“不传!不传!”----老舍《断魂枪》
嘟****y 2018-07-11
大型企业适用的云平台账户体系
现在越来越多的云平台会让客户账户下创多个权限和访问隔离的资源组,不同的资源组会各自做用量统计和配额限,逐步解决了管理员侧的资源隔离和计费问题。 ##有的平台会把这些资源组叫做“资源账户”,但这和下文的权限账户会有名称混淆,本文是将其称为资源池或者资源组。 第三.多账户权限隔离 相关用户在云平台要有自己的账户,这样才好记录操作日志和做权限控制。 首先要保证这些账户不能用于登陆到公司的其他业线,特别是个人业线,这也是账户研发一直滞后的重要原因。 最简单的账户是管理员手动创账户密码,但这有弱密码和员工离职问题;简洁方案就是管理员手工创账户,但密码验证由客户的企业AD做Keberos认证来完成;最复杂对接即将AD的账户体系(含用户注释和分组信息)完整引入云平台,但云平台管理是小众需求,AD管理员一般不是合适的云平台管理员,这个功能要斟酌。 创和打通账户以后就可以给客户设置各个资源组的权限,很多客户不需要高权限,低权限也是对操作者的保护。每个资源组大约有如下权限分组: a.管理角色,即可以对该资源组不受限的执行部动作,还可以做二级授权,减少云平台管理员的工作压力。
m****t 2018-07-11
设计中立公有云云管平台
云管平台要集成OSS和CDN时,一定要注意这两个是没有区域概念的,比如客户用了百度北京的虚拟机加七牛浙江的云存储和阿里国的CDN,此时客户业绝对跑的通,三方互通有额外网络开销。云管平台的资源创和计费系统都要考虑清楚,尽量资源走一个供应商,或要求不同供应商之间相互免费。 述PaaS资源都有一个特点,可以按照使用量付费,或者提供贴合到业逻辑操作层面的支持功能,那也就代表着客户的计费访问数据铁定会被供应商拿到,而业数据是否被偷窥要看供应商自律。 我们再看看下文一些更专业(偏)的。 容器云入槛太高,在中小客户场景下缺乏成功案例,如果没有具体项目要求容器云,就等到接完面的PaaS再考虑接入容器云。 反DDOS攻击只能由云厂商提供,因为开销偏大计费不灵活,但又没有日常管理需求,客户到云管平台到厂商沟通时直接用邮件、工单和合同即可,如果没有频繁攻击和检测需求,可以不留展示界面只用邮件通知。至于渗透测试和漏洞扫描,其实和云没直接关系,没必要纳入云管平台。WAF可以参照负载均衡进行设计处理。
布****五 2018-07-10
如何执行一条命令
可是如果要在几十万台机器每天执行几十亿条命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24小时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构这样的执行系统的过程中要面临诸多困难,此处举几个突出的例如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构一个可靠的命令传输网络,使命令信息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构执行代理,以应对单机的复杂执行环境。
M****点 2018-07-10
中国云计算现状——产品篇
最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,小量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没大规模对象存储搭能力,而且对象存储对应用程序友好手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了TB的数据,大数据和AI分析应用自然就部署来了。广域网传输稳定性不够成本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展空间。 大数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,大数据PaaS都用成IaaS定制模板虚拟机了。
TOP