关于 找小妹包夜服务【v信78792796】鹤山共和镇保健足浴按摩服 的搜索结果,共1045
h****e 2018-07-10
程序:我从哪里来?
4客户端 BNS系统主要含两个客户端:查询客户端康检查客户端,我们分别用Naming AgentCheck Agent来代指两个。 客户端部署在所有的机器上,并提供命令行工具丰富的SDK以及各类插件,方便用户在各个场景使用。 Naming Agent:提供BNS的查询功能,用户可以根据一个名字(组、单元、实例)就能得到详细的息。Naming Agent与Cache层的数据交互,采用推拉结合的方式,Naming Agent主动拉取数据Cache模块推送变更数据,同时Naming Agent客户端会将查询过的数据置于本地缓存中,以此降低Cache层的查询压力。 Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器上的Check Agent会主动探测所有实例的运行状况,并将康检查的结果上报给Cache层,同时更新数据库内容。 总结 BNS系统满间交互中常见的的资源定位、IP白名单维护等需求,也可以用于机器列表查询,使用场景括机器列表查询、定位、白名单维护、数据库智能授权等,解决了程序“我是谁?
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
直接损失括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失括用户任度下降、给竞品占领市场机会等。 单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景下,运维人员通常选择7*24时值班,接收大量的报警,随时准备在紧急情况下进行响应、决策、操作一系列故障止损动作,尽量挽回损失,降低故障影响。 但上述解决方案会面临如下问题: 响应可能不够迅速:例如间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景下,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理过程,并及时向运维人员同步故障处理状态。
追****圣 2018-07-11
给书记省长讲清楚云计算
如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络驾护航。 前几条都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动上门寻求合作。从长周期来看云计算的客户是覆盖全球全行业的,各地内部采购的计算机项目根本不值一提,市场客户要靠云计算厂商自己去。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到全国。这个窗口期只有三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 前文说的为何要引凤,如何算筑巢。当云厂商看到商机肯合作时,我们要掌握各类云厂商的特点才能心里有数。 第一类是大型云厂商,他们自身有很强的资源整合能力执行销售能力。地方政企这类企业合作的话语权很弱,但极风险就能看到收益。 第二类是创业云厂商,他们一般是靠技术优势态度从大型云企手里抢单子。
s****7 2018-07-10
见微知著看技术误解——从裸光纤NTPD谈起
三、正确的时间是向量 Linux环境下有两个常用工具,NTPDntpdate。NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞回逆。时间不稳会威胁到的程序壮性安全性,甚至部分程序崩溃的稀里糊涂。
w****0 2018-07-11
单机房故障自愈-黎明之战
干货概览 在故障自愈机器人,你安心好睡眠一文中,我们介绍了单机房故障自愈的必要性解决思路。本文主要介绍单机房故障自愈前需要进行的准备工作,具体括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的全面故障发现能力 百度统一前端(BFE)百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例全部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来全局性影响。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不,但面对大客户时会很坦诚。 作为持久生的大甲方,请关注乙方的成本红线,买家永远没有卖家精。如果甲方给够钱了,乙方仍然用劣质硬件IDC过高超售比,云厂商一般是老板带头节俭,而大云厂商很可能是执行层的人弄错了,作为甲方该闹就要闹。 人为原因 云厂商的人为故障总是糊涂账,但细心的甲方是能看出来端倪的。有时候厂商想遮蔽技术资源的问题,会说是人为原因,缓过这一次故障赶紧修订BUG准备资源;有时候明明是人为原因,但人为故障都是打脸实锤,厂商脸会肿而且要赔偿,可能会个其他原因来给脸部降降温。 对于落实是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的实际损失更,甲方无法触及云厂商能倒腾出故障的部门。甲方只能根据云厂商销售线的能力态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业誉。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,用量付费可能会比资源付费更便宜(也可能更贵),而PaaS平台的恼人诱人之处均在于产品形态很模糊、质量很难评估、很难独立运营、没有领头羊企业事实标准。 PaaS云平台IaaS云资源的区别就在于,平台需要理解客户的动作状态。对象存储CDN就是最典型的PaaS,云平台照数据容量、访问流量、访问次数方法收费;Mysql RDS只能照内存日志空间上限计费,但仍然可以替客户做数据库状态展示、分析备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库DBA了,DBA并不任云端未知架构数据库的性能、稳定性数据安全性,而且企业仍然需要DBA承担设计维护工作。
若****客 2018-07-10
IT架构的本质--我的五点感悟
前端器压力大了就多做水平复制扩容,在网站类应用上,无状态-会话持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散微操作就越爽,但全局操作开销更大更难控制。 实时改异步是我学的最后一门IT技术,绝大部分“实时操作”都不是业需求,而是某应用无法看到后端Peer状态,默认就要实时处理结果了。CS模式的实时操作会给支撑带来巨大压力,Peer合作的实时操作可能会让数据申请方等一宿。架构师将一个无脑大事拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做全局事障。 在群集性能规划中,网络硬盘IO+CPU算力+磁盘内存空间是可以互换的,架构师要完成补不而损有余的选型。比如数据压缩技术就是用算力资源来置换IO空间,缓存技术是用空间IO来缓解算力压力,每个新选型都会带来细节上的万千变化,但每种变化都是符合自然规律有章可循的。 一个经典微机系统就是中央处理器+主存储器+IO设备,这几个概念居然群集性能规划是一一对应。 3.
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动上层业测试变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自定义SLA标准——大部分API云连等待超时都没定义。 版本发布数字化转型——无论是微观的版本发布还是宏观的数字化转型,其实都上云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施结项都是以结果为导向的,明确的过程控制验收标准对供求双方都是护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。
p****d 2018-07-11
单机房故障自愈--运维的春天
基于内网监控、基础监控、业监控提供的故障号;触发内网止损决策器进行止损决策;执行流量调度、主备切换、弹性降级等止损操作。 单机房故障自愈的常见问题解决方案 传统的流量调度自动止损方案存在如下问题: 1容量风险控制能力不 【问题描述】 传统流量调度的模式有两种:固定比例模式与容量护模式。 固定比例模式:照预先设定的固定预案,一个机房故障,该机房的流量照预先设定的比例分配到其他的机房。很可能某个机房的容量或剩余机房的总容量不,切流量后导致多个机房发生故障。 容量护模式:针对固定比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充,容量充则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量护的情况下进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完全可
布****五 2018-07-10
如何执行一条命令
部署过程可以拆解为两个的步骤,一是新软件的上传,二是进程的重新启动。进程的重新启动不必多说,软件的上传可能有多种方式,如sftp的集中式,p2p的点对点式等。 监控采集 软件运维过程需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策过程更是需要采集大量的实时息(前期文章《百度大规模时序数据存储》中介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进程状态/系统状态等(如使用grep提取日志,通过ps查询进程状态,通过df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都有一个同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。
TOP