关于 找服务上门按摩小妹薇78792796绍兴安昌镇全套官窑上门阮 的搜索结果,共970
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最常见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
1****2 2018-07-09
百度:AI 是系统工程 需要真正开放的护航
根据百度的总结,AI 的既包含传统层面,比如AI 系统的硬件、软件、 框架、协议等,也包含AI 自身层面的,比如错误地引导机器学习系统,以达到攻 击者的目的,或者破坏机器学习的样本,让机器学习得出错误的结果。 在最近的GeekPwn 极棒破解大会现场,百度实验室的研究员只用一张打印的A4 纸晃了晃,就成功秒破了某卓智能手机的人脸识别认证系统,虹膜和指纹也相继 被破解。AI 时代,人脸识别、指纹密码、人眼虹膜认证等生物认证方法,取代了传统 的密码。很多人认为生物识别的唯一性保护了我们的隐私。但事实,这种想法实在过 于简单。要知道,当你成功把自己变成一个活着的人体密码的时候,也就成为了黑客的 重要“资源”。 云管端一体化的AI 方案 在这次OASES 联盟成立的发布会,百度宣布向联盟成员开放了其在AI 生态的多项能力。方的说法是,希望在智能终端领域,通过专利共享、技术开源、标准共建,与联盟合作伙伴共同推动技术与的应用落地,共建的AI 时代。
h****e 2018-07-10
程序:我从哪里来?
通过部署在机器的客户端感知到实例的状态变化(比如实例状态由0变成-1,即正常变成非正常),并将数据同步到系统中的分布式缓存,游模块可以通过查询redis.noah.all的实例状态结果,主动过滤非正常的实例,也可以在BNS系统中发起屏蔽故障实例的操作,在查询过程中会自动过滤该故障实例。 在下一节中将具体介BNS系统的整体架构。 基本架构 BNS系统主要包含几个部分:流量接入层,Web Server,存储层,代理客户端。 作为一个底层的基础,BNS系统每天的访问量近千亿次,这对系统的可用性提出了很高的要求,因而系统需要在各个层面有完善的容灾能力和流量管控能力。 1流量接入层 系统通过HTTP接口对外提供变更,用户通过Web页面或者接口进行或实例信息注册。为了保证平台稳定和的运行,需要对非法和异常请求进行拒绝,在流量接入层(Proxy)端提供了以下两个功能: 流量鉴权:每一个组、单元、实例的注册都需要进行权限验证,用户只有申请了合法的Token才能允许访问,另外系统还提供了白名单等其他的鉴权方式。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房里,各种各样的器、网络设备和设备7x24时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统里? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、架、机架变更,直到设备下架、出库生命周期覆盖,做到所有运维操作记录可追溯。有了资产管理,运维人员可以在器完成入库、架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
双****4 2018-07-11
【杂谈】猎场没那么精彩--还原真实的猎头
我看那些影视剧中对猎头的刻画过于夸张,照那种方法做猎头就别想挣钱了。 第一点,猎头不会深度参与面试,甲方人事部不会让“外人”参与面试决策;猎头的核心利益是成单拿佣金,在甲方面前也是外人。敬业的猎头会程跟踪面试者的反馈,老练的猎头能从HR手里拿到真实面试结果,但猎头不会出现在甲方办公室和甲方一起面试候选人。 第二点,候选人不会懒得接触猎头,不需要猎头给候选人端茶端尿陪床吊。候选人懒得和猎头聊很可能是因为这个职位太挫没吸引力,少部分是自己有内线不用走外部渠道。如果招聘方要定向挖某人,老板亲自出马比猎头约见面有诚意多了。 第三点,任何供应商不能公开干涉甲方内。诸如“猎头要做的就是把顶尖人才放到合适的职位”这类话听听就好,候选者是不是顶尖人才猎头说了不算,能不能进这个公司猎头同样说了不算。猎头就是提供人才搜寻的供应商,这个供应商不能替甲方人事和业做决策。 第四点,猎头不会固执于一个项目,猎头不会跟候选人强推意向单位的宏大蓝图,因为候选人本人也是业内专家不用猎头来教;更不会向甲方强推候选人,面试眼拙运气差那就只能认栽,本公司bHR都无法说得的面试,外部猎头能说什么?
s****d 2018-07-11
亿元级云用户分析
1.云目的分析 大型云用户云的宏观目的和普通用户类似,但多角色多部的利益诉求非常复杂。 降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和合同。 明确责任:客户不想承担各个IT系统的衔接和选型责任,相比软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:云本身并不碰业数据,但云是很好明确业数据存储位置的机会,云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居思危,在困境危难之中穷极思变,IT技术是企业的潜在增长点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为云目的分析。亿元以器、CDN的订单很多但既无技巧也无利润,这些资源厂商也在跟云厂商学习如何包装项目。 2.客户角色利益分析 大企业多角色之间的利益诉求不同,所以表现形式也不同。我将客户三大角色列出来讨论,销售-售前-项目经理铁三角组合明确客户的诉求,才更好游刃有余的客户。
TOP