关于 找服务小妹一条龙_v信78792796平江县一夜情丁 的搜索结果,共1567
布****五 2018-07-10
如何执行命令
面临的困难 命令行的三要素,也是如何执行命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器上每天执行几十亿命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24时稳定运行,就不是件简单的事了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 息存储问题:为了支持水扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建个可靠的命令传输网络,使命令息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
l****m 2018-07-10
词向量(
词向量是自然语言处理中常见的个操作,是搜索引擎、广告系统、推荐系统等互联网背后常见的基础技术。 在这些互联网里,我们经常要比较两个词或者两段文本之间的相关性。为了做这样的比较,我们往往先要把词表示成计算机适合处理的方式。最自然的方式恐怕莫过于向量空间模型(vector space model)。 在这种方式里,每个词被表示成个实数向量(one-hot vector),其长度为字典大,每个维度对应个字典里的每个词,除了这个词对应维度上的值是1,其他元素都是0。 One-hot vector虽然自然,但是用处有限。比如,在互联网广告系统里,如果用户输入的query是“母亲节”,而有个广告的关键词是“康乃馨”。虽然按照常理,我们知道这两个词之间是有联系的——母亲节通常应该送给母亲束康乃馨;但是这两个词对应的one-hot vectors之间的距离度量,无论是欧氏距离还是余弦相似度(cosine similarity),由于其向量正交,都认为这两个词毫无相关性。 得出这种与我们相悖的结论的根本原因是:每个词本身的息量都太
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署况、实例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的套分布式的名字系统,是百度云Noah智能运维产品中的个重要基础系统。它为每赋予个独无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些息包括:在机器上部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了名到资源息的个映射关系。
c****2 2018-07-10
个性化推荐(
背景介绍 在网络技术不断发展和电子商规模不断扩大的背景下,商品数量和种类快速增长,用户需要花费大量时间才能到自己想买的商品,这就是息超载问题。为了解决这个难题,个性化推荐系统(Recommender System)应运而生。 个性化推荐系统是息过滤系统(Information Filtering System)的子集,它可以用在很多领域,如电影、音乐、电商和 Feed 流推荐等。个性化推荐系统通过分析、挖掘用户行为,发现用户的个性化需求与兴趣特点,将用户可能感兴趣的息或商品推荐给用户。与搜索引擎不同,个性化推荐系统不需要用户准确地描述出自己的需求,而是根据用户的历史行为进行建模,主动提供满足用户兴趣和需求的息。 1994年明尼苏达大学推出的GroupLens系统[1]般被认为是个性化推荐系统成为个相对独立的研究方向的标志。该系统首次提出了基于协同过滤来完成推荐任的思想,此后,基于该模型的协同过滤推荐引领了个性化推荐系统十几年的发展方向。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。直接损失包括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失包括用户任度下降、给竞品占领市场机会等。
追****圣 2018-07-11
给书记省长讲清楚云计算
在最近的十年,移动互联网兴起,便捷的通、打车、外卖、电子支付等功能层出不穷,所有面向个人消费者的行业都在加速互联网化;未来十年里,计算机技术将深刻影响工业生产领域。这时问题出现了,我们需要上千万名工程师吗,我们有这么多工程师吗? 历史总是惊人相似的轮回,在国家决策层面,云计算是个可以和能源、金融相提并论的领域。 第次工业革命开始时,每个矿山都安装各自的蒸汽机;第二次工业革命开始时,每个工厂都要重点解决电力等能源问题;息技术革命开始时每个公司都要有计算机工程师。但百川终到海,发动机能统标准,电力能源能集中供应,云计算台可以实现计算机技术的标准化,凭借规模效应降低成本,让客户直接付费购买息技术,极大减少了客户的人力投入以及衍生的时间和管理成本。 息技术革命的核心工作是息的存储和处理,最重要的资源是数据。客户的数据放在云台就像资金放在银行样,银行可以根据储户的流水评估用,央行可以对货币进行宏观调控,云样可以对用户息进行评估计算,甚至国家层面可以进行宏观管理调控。
流****水 2018-07-11
度云企业级运维台——NoahEE
简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下上面的例子。这个例子中,地图研发的同学就可以在运维台中选中导航的模块进行升级,运维台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加些指标采集任,并在件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。 资产管理 在机房里,各种各样的器、网络设备和安全设备7x24时的运转,为我们的业提供了硬件保障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存等等。这里涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复?
M****H 2018-07-11
故障定位场景下的数据可视化实践
基于上面的需求,可以总结为以下三个定位的层次,从整体到局部逐步缩故障范围,到故障根因: 全局问题定位:快速确认线上状态,缩故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建个全景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进步缩问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:况下,问题的根因需要借助除监控指标之外的数据进行分析。例如上线变更、运营活动导致的故障。本文针对导致故障占比最高的变更上线类故障进行分析,看如何快速到可能导致故障的变更事件。 全景掌控缩范围 对于乃至产品线而言,拥有个布局合理、息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控台中,我们提供了款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据息。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是个体系化的,而ntpdate只是个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业安全性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目任;假设个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的况,但业混乱是免不了的。
嘟****y 2018-07-11
大型企业适用的云台账户体系
这些年来云计算技术突飞猛进,但我直很怕和客户谈云台的账户体系,因为客户有合理化需求,而(某客户说)云台的账户设置就是在糊弄鬼。随着大部分云台在完善账户体系,我们可以心气和的谈谈而非吐槽这个问题了。 云计算公司的技术班底大都是个人业起家,他们最早接入的是中企业和创业者,其账户体系并不适用于大型企业客户。大型客户上云之前都用过虚拟化、域管理、网管资源管理软件,肯定不适应这套功能单薄诡异的用户约束。本文的目的是为了让大客户有底气提出质疑,让云台继续完善开发,最终提供符合企业级应用场景的账户体系。 第.账户注册问题 首先我们看法问题,如果注册时死抠法问题,国内各大云台会颗粒无收。 我随便摘取了几段账户注册的用户协议: 客户的云账户是唯身份识别依据,就连交钱时也是只认账户不认人。 云台有权限制客户账户下所有产品及全部功能,心不好就不卖。 客户保证不会影响云台关联公司的合法权益,其标准由云台做权威判断。 这是不是有种“客户你好,我是你大爷,爱买就买,不买就滚”的即视感?谁有资格代表公司去注册账户和同意款,IT部私自注册云账户跟私签合同的区别大吗?
疏****月 2018-07-09
键上线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称上线)是运维领域最常见的业类型,主要涉及线上代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的下,让数据自动生效》中专门讨论过)。般的业上线具有不定时操作、业部署况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由上线变更触发,如何减少变更过程中人为误操作,提供个灵活、稳定的部署系统是运维台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理台Noah发布了键上线部署系统——Archer。Archer致力于提供套产品线全过程的可迁移发布解决方案,实现键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全过程的自动操作。在操作方面,Archer提供了命令行工具作为发起次上线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为个环节结合进整测试发布流水线中。
m****t 2018-07-11
设计中立公有云云管
云管台可选接入厂商满足中型客户需求,毕竟不用自己做维护;但遇到重型客户需求建议直接在高配虚拟机上自己搭,或者走混合云物理机接入VPC的模式。 不考虑高可用性的。这其实挺尴尬的,理论上来说即使是内存缓存型也有双活机制,但是厂商PaaS的后台架构完全是黑盒,没出故障时都是专业架构,出故障了都是百年遇,大都是“只考虑人品”的。以RDS为例,不同厂商的RDS可靠性千差万别,我亲眼看过很低可靠性的,也听朋友说过本厂的RDS可靠性远超普通DBA;但RDS对客户只暴露接口,我们不知道厂商给主库磁盘做没做RAID,也不知道主从库会不会在同个物理机。所以前文中我对中客户用PaaS当做节省自己搭建的人力,对大型重型PaaS需求建议个案处理,因为各厂商通用的百倍赔偿根本就是个免责款。 对象存储(OSS)和CDN。我直不理解Nova和Swift如何从业上联动,做虚拟机时跟客户解释买虚拟机不关心OSS,做对象存储时解释OSS和其他云台没什么好混合的。
小****园 2018-07-10
让PB级云存储不再神秘
大客户的数据般都是存在于旧系统的,其迁移方案比客户复杂,拉专线、寄设备、追增量、切业等等方面都要考虑到。般迁移方案是现有数百T数据,规划未来3年到10PB,数十个轻量应用对接代理网关继续使用,几个核心高负载应用改成直接访问存储。为了更好的发挥对象存储优势,厂商还要诱导客户使用云台的各种新功能。迁移方案要靠谱必须说清楚所依赖环境、操作时间规划、各步风险评估、验证验收标准等息。 大客户同样在于云台的职业操守,但其反击能力要强于中客户,因为他们不会用云台的标准合同,而是自己订制合同内容。法律合同上能震慑台的部分动作,但计费统计数据云台还是会拿到,客户可以考虑多分几个供应商多做几个存储池。 4、何时选择私有云 对象存储般是公有云,但是超大型国企、电运营商、国家级项目、大型独立互联网企业、金融行业、智慧城市、基因、气象、医疗等行业都因特定原因使用私有云存储。 对象存储适用于私有云主要基于这三方面考虑: (1)建设成本 公有云建设成本有三大头,器、IDC和公网带宽。公有云对比对中型客户在这三方面成本有巨大优势,但也给自己保留了利润空间。
TOP