关于 找服务小妹一条龙_v信78792796青岛市南一夜武 的搜索结果,共1506
布****五 2018-07-10
如何执行命令
面临的困难 命令行的三要素,也是如何执行命令行面对的三个问题,如前文所述,对于单机环境来说,这三个问题在前人的努力下已经被很好的解决。可是如果要在几十万台机器上每天执行几十亿命令,同时保证时效性,保证执行成功率,保证结果正确收集,保证7*24时稳定运行,就不是件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建个可靠的命令传输网络,使命令息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
l****m 2018-07-10
词向量(
词向量是自然语言处理中常见的个操作,是搜索引擎、广告系统、推荐系统等互联网背后常见的基础技术。 在这些互联网里,我们经常要比较两个词或者两段文本之间的相关性。为了做这样的比较,我们往往先要把词表示成计算机适合处理的方式。最自然的方式恐怕莫过于向量空间模型(vector space model)。 在这种方式里,每个词被表示成个实数向量(one-hot vector),其长度为字典大,每个维度对应个字典里的每个词,除了这个词对应维度上的值是1,其他元素都是0。 One-hot vector虽然自然,但是用处有限。比如,在互联网广告系统里,如果用户输入的query是“母亲节”,而有个广告的关键词是“康乃馨”。虽然按照常理,我们知道这两个词之间是有联系的——母亲节通常应该送给母亲束康乃馨;但是这两个词对应的one-hot vectors之间的距离度量,无论是欧氏距离还是余弦相似度(cosine similarity),由于其向量正交,都认为这两个词毫无相关性。 得出这种与我们相悖的结论的根本原因是:每个词本身的息量都太
c****2 2018-07-10
个性化推荐(
背景介绍 在网络技术不断发展和电子商规模不断扩大的背景下,商品数量和种类快速增长,用户需要花费大量时间才能到自己想买的商品,这就是息超载问题。为了解决这个难题,个性化推荐系统(Recommender System)应运而生。 个性化推荐系统是息过滤系统(Information Filtering System)的子集,它可以用在很多领域,如电影、音乐、电商和 Feed 流推荐等。个性化推荐系统通过分析、挖掘用户行为,发现用户的个性化需求与兴趣特点,将用户可能感兴趣的息或商品推荐给用户。与搜索引擎不同,个性化推荐系统不需要用户准确地描述出自己的需求,而是根据用户的历史行为进行建模,主动提供满足用户兴趣和需求的息。 1994年明尼苏达大学推出的GroupLens系统[1]般被认为是个性化推荐系统成为个相对独立的研究方向的标志。该系统首次提出了基于协同过滤来完成推荐任的思想,此后,基于该模型的协同过滤推荐引领了个性化推荐系统十几年的发展方向。
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的套分布式的名字系统,是百度云Noah智能运维产品中的个重要基础系统。它为每赋予个独无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些息包括:在机器上部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了名到资源息的个映射关系。
追****圣 2018-07-11
给书记省长讲清楚云计算
器就是高功耗高价格的专业电脑,云计算企业的采购规模般远大于政企集采,他们能从硬件厂商那里拿到极限低价,政府和国企能提供的更多是采购资金的支持。 云计算是个商业,不仅需要硬性支持,还需要足够的环境和政策支持。当前云计算公司聚集在线大城,环境规范稳定但成本极高竞争压力极大,云计算企业也在尝试向二三线转移突围。二三线城不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线城对互联网还只是简单的管控,稍有不解可能就会封禁大批互联网,但道封网命令就可以毁掉个云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络保驾护航。 前几都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有场有客户那对方会主动上门寻求合作。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是个体系化的,而ntpdate只是个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业安全性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目任;假设个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。直接损失包括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失包括用户任度下降、给竞品占领场机会等。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
这个文件注释很简单但水很深,我们该用标签还是UUID来标识磁盘,文件系统自检功能要不要开,这都可以聊好几个时。 看看各的启动优先级也是个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以上内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都上云了,它们就只是闲聊的谈资了。但客户上云就能少招个研究这事的工程师,上云确实也很有意义啊。 静人稀,沙子关好了门,气把六十四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野店荒林的威风。叹口气,用手指慢慢摸着凉滑的枪身,又微微笑,“不传!不传!”----老舍《断魂枪》
M****H 2018-07-11
故障定位场景下的数据可视化实践
基于上面的需求,可以总结为以下三个定位的层次,从整体到局部逐步缩故障范围,到故障根因: 全局问题定位:快速确认线上状态,缩故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建个全景分析仪表盘。 细分维度定位:通过分析地域、机房、模块、接口、错误码等细分维度,进步缩问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如上线变更、运营活动导致的故障。本文针对导致故障占比最高的变更上线类故障进行分析,看如何快速到可能导致故障的变更事件。 全景掌控缩范围 对于乃至产品线而言,拥有个布局合理、息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控平台中,我们提供了款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据息。
小****园 2018-07-10
让PB级云存储不再神秘
个客户要下载自己2000万fileinfo息,按5息1k算,这2000万 fileinfo息有4GB大,就算云存储能精确的0.1秒查完,客户有能力0.1秒下载完这些息吗? 如果你觉得元数据压力还是大,那还可以让计费系统、读写代理都对查询结果做缓存,或者将数据库挂在成熟的Proxy背后做分库和调度。 我们的数据库能低压力运行,就是设计时充分理解适应了对象存储元数据这简单需求。 3、灵活的读写代理 读写代理是整个群集保持松耦合高性能的关键点,这也离不开对场景的深度理解。 首先说读写代理的高可用、负载均衡和高性能,我们会在读写代理前面加几台Nginx,客户端到读写代理都是无状态连接。客户端可以通过LVS、单域名DNS轮询、多域名分散业等方式将请求分散到多台Nginx,Nginx将请求交给任意读写代理都是能得到相同结果的。单个读写代理崩溃了SDK端会后台重试,直接访问API的用户会以为是自己网慢重新刷新。这么灵活的访问方式,有性能问题多堆几台机器就好了,20G带宽5万个链接很容易消化。 读写代理在访问客户时代表存储端,在群集内部扮演的可客户端。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得匹。
林****颖 2018-07-10
中国云计算现状——成本篇
综合评估 综上所述,前三成本都是大厂商对比厂商占据绝对优势,但大厂商之间的成本区别并不大,因为硬件降价折扣是有底线,全国能拿到便宜器、机柜和带宽的厂商肯定超过十家了。企业客户是理性选择供应商,并不会盲目黏在个平台不走,而各厂的技术差距早晚是能追平的,后入场的大玩家样有插足分羹的机会。 厂商的机会集中在如何避免同大厂商在前三上正面竞争,少丢分或不丢分,然后在后三上发力破局。首先,天使和A轮的厂商,创始人大都是业内知名人士。BCD轮的厂商抢人的姿势超级凶残,烧点工资快速刷出产品线和销售额,VC也会很开心。厂商可以保持灵活的身姿、手握精兵团队,而大厂商因为决策链太长,庸才冗吏太多,后三很容易丢分。 厂商并非毫无胜算,甚至活的比过去更好,因为大厂商在完成培育场教育客户的工作,厂商在现状下可选的策略非常多,我简要描述下。 1、厂商可以做私有云,硬件机柜和带宽成本让客户来承担。 2、厂商有自身灵活性,售前阶段技术总监亲自出马很容易吹死大厂商的普通职员,出了故障CTO挂帅快速解决故障;而大厂员工吹牛怕是过不了法关、没高层和公关确认都不敢承认平台有故障。
TOP