关于 柳州五里亭找少妇服务保健〖10669708薇信〗 的搜索结果,共652
h****e 2018-07-10
程序:我从哪来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些息包括:在机器上部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了一个名到资源息的一个映射关系。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD做时间调整会有效减这类情形,它不是简单的龟速调整时间,而是有柔性时间调整策略,让时间线的跃变和调整尽量影响业(详情见附录实验);也不会盲目任远端时钟源,甚至固执的拒绝同步时间。NTPD本机时刻有可能不对,但不会忽快忽慢甚至停滞,NTPD通过多次收发包选择权威稳定的时间源,算出双方间的网络延迟,然后才会采新的时刻进行时钟同步。 、误解的根源和影响 因为NTPD不盲从其他时间源,让老一辈IT人会留下NTPD不好用、不靠谱的误会。2005年个人测试用虚拟机的时间经常走慢,到2010年虚拟机还要防范时间停滞的Bug。即使你用物理机投入生产,网络延迟仍然不确定,且要观测NTPD同步效果需要时间。我们很难成功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背上黑锅了。 真有TOP10的互联网公司和上亿国家级项目用ntpdate+crond,上一代架构师为什么有这个误会无人深究,下一代人将误会固化为偏见,新一代人将偏见神化为迷
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
追****圣 2018-07-11
给书记省长讲清楚云计算
从长周期来看云计算的客户是覆盖全球全行业的,各地内部采购的计算机项目根本不值一提,市场和客户要靠云计算厂商自己去。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到全国。这个窗口期只有三年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 前文说的为何要引凤,如何算筑巢。当云厂商看到商机肯合作时,我们要掌握各类云厂商的特点才能心有数。 第一类是大型云厂商,他们自身有很强的资源整合能力和执行销售能力。地方政企和这类企业合作的话语权很弱,但极小风险就能看到收益。 第二类是创业云厂商,他们一般是靠技术优势和态度从大型云企手抢单子。地方政企和这类企业合作时有很强的议价能力,注意不要盲目倾向技术优先的创业云厂商,而是选择态度和执行能力好的创业云厂商。地方政企很难确切搞懂厂商的技术有哪些优势,而项目的推进落地都是要靠云厂商来执行的。 第三类是外企云厂商,这类厂商是被广阔的中国市场吸引过来的,也有兼顾外企中国分部的客户。
l****m 2018-07-10
年前的预言——2012年云计算时代的运维职位展望
当然了,我相能胜任这个岗位的人,在云计算已经规范到不需要专人维护的时候,他们也会有能力到更合适的岗位。 2、进行云计算器维护;几大云供应商自己也要维护器,那些大中型企业肯定会自己做私有云,在这个云计算平台也是需要运维人员进行从低端监控到高端架构的一系列维护工作,但自动化运维技术会让运维人员的数量大大减,可能每个公司都只有一两个小团队了。 3、进传统行业继续做运维;笔者就是在一个通讯公司工作,我可以很乐观的说云计算会对公司造成有限的技术革新,比如说实现OS的虚拟化。我们需要的SIP必须亲自搭建,阿盛大新浪都没得卖,甚至因为硬件和网络限制让我们很难使用虚拟机;而外宣网站一类的东西根本不是我们的核心竞争力,能用就好效率低一些没关系。除了通讯公司之外,生产领域(比如管理生产线)也有类似的顾虑,云计算的优势和公司的业需求完全不沾边,所以这类公司的运维可能会是最后的运维。大家工作的时候都习惯网站相关的工作,但你学过Web就一定要网站工作是挺蠢的行为,危邦不入乱邦不居,最好不要涉足一个没有前途的行业。
流****水 2018-07-11
度云企业级运维平台——NoahEE
简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下上面的例子。这个例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。 资产管理 在机房,各种各样的器、网络设备和安全设备7x24小时的运转,为我们的业提供了硬件障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不的物理操作,比如说更换损坏的硬盘,增加内存条等等。这涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复?
w****0 2018-07-11
单机房故障自愈-黎明之战
干货概览 在故障自愈机器人,你安心好睡眠一文中,我们介绍了单机房故障自愈的必要性和解决思路。本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的全面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例全部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来全局性影响。
布****五 2018-07-10
如何执行一条命令
所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令息在准确送达的前提下障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。 图2简单问题放大后也变得困难 百度目前拥有分布在世界各地的几十万台器,并且随着业的不断扩张,这个数字还在持续增长,构建一个高效稳定通用可扩展的命令描述、传递、执行系统在这样的环境中有着重要的现实意义。对百度各产品线的用户来说,这样的一个系统,最基础的要求是:执行高效,控制灵活,扩展方便。
小****园 2018-07-10
让PB级云存储不再神秘
数据存下来不代表有价值,曾经我们留几百TB的日志,却只能做最简单的加减乘除统计,或者用于出问题后扒日志堆证据;我们可以下载数万部影视剧,但一个人一辈子都看不完这些视频。 现在某些营销云已经可以做到毫秒级响应做精准广告投放,用户的日志更有价值了;人工智能逐渐参与辅助医疗,医学影像数据值得存十年了。随着技术进步价格降低,无论是监管政策还是客户需求,都在推动着数据总量越来越大。比如说现在您买理财产品已经要求全程录像防止误导消费者了,比如说人脸识别已经应用到手机转账审核中。 我们在一个风口时代,无数从不联网的设备、从不收集的数据都跃上云端,已联网设备息量也大大增加,作为技术决策人,必须有应对PB级存储需求的前瞻性。 假设你做ToC的App,只要你有爆款的梦想,就要存储爆仓的数据。 假设你是智能终端的设计者,现在生成的多媒体数据不仅仅可以被自然人拿来看了,我们还有很多想象空间把数据进行统计和处理。 假设你是物联网综合方案规划者,数据从存5天变成了存5年,你们能做出多更合理更有长远性的决策? PB级存储需求来了,但是市面上有多成熟可用的PB级存储案例哪?
若****客 2018-07-10
IT架构的本质--我的点感悟
我将架构师的工作总结出条核心道理,这条经验简单直白又深奥通透,算是对我十二年IT工作的一个总结。 1. 需求优化最重要 依赖,Less is more 一个IT系统是多角色多模块分层分级的,像OSI模型上层应用简单依赖下层支撑,SOA设计中同级角色也只看对方的接口。 各角色分工明确方便快速实现业,但是给架构优化也埋下大坑,底层的盲目支撑是巨大资源浪费,平级调度协作也没任何弹性。前端一个小逻辑需求会导致后端大规模联动,不同也没权限理解对方的内存数据,各个角色的工程师都只看自己的工作范围,这是正常又无奈的现状。 我们要搞架构设计最重要的就是砍需求,将上层应用的需求优化删减,让同级的业能容错。上层需求优化,即前端对后端输入查询多容错,而同级容错可以看做应用间的需求优化,比如两个可以幂等重试就是好解耦,而A系统会等B系统等到死锁就是架构悲剧。 某电商ERP系统的用户点一次查询按钮,后台系统就锁库查询一次;实操过程中系统越慢用户就重复点查询按钮,而并行查询越多后台速度就更慢。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动上层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自定义SLA标准——大部分API云连等待超时都没定义。 版本发布和数字化转型——无论是微观的版本发布还是宏观的数字化转型,其实都和上云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。
TOP