关于 桑拿全套服务 78792796-微V号宣武宣武门小妹真实服务程 的搜索结果,共1027
h****e 2018-07-10
序:我从哪里来?
干货概览 在计算机序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些例,规模、部署情况、例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器上部署信息(机器IP,部署路径,配置,端口信息),例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损流 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
后来我和于老板深究原因,不可能几个朋友都骗我或者都蠢,很可能前些年光纤波分机自己只能甩出10G口,或运营商租光纤餐里只有10G规格,给大家造成了裸光纤只能跑10G带宽的印象。同样固有的印象是光纤必须从运营商那里租,而且价格很贵还必须买波分设备等等;其现在企业专线的市场竞争很充分,拉同城裸纤一公里也就几百块钱,而且短距离裸纤也不值得上波分设备,直接对接模块即可。 二、NTD是试金石 我对裸光纤是外汉,但同样的技术误解让我想到了NTP,我一直ntpd和ntpdate当做初中级系统工师的试金石,分不清就月薪五千,分得清就八千以上(2014年市价)。但很多货的IT专家也在此事上跌倒,我也希望通过聊清楚一层误会,说明高级工师该少迷信多思考。 NTP是网络时间协议,它是多项传输、计算、加密技术的核心参数。 假设我认为TCP连接超时断开链接了,你怎么给我传输数据; 玩各种定时给奖励收益的花园经营类游戏,我经常通过修改时间快速刷分; 你的系统时间不对网银都会拒绝登陆,因为加密序算不出双方认可的Token。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称上线)是运维领域最常见的业类型,主要涉及线上代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业上线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由上线变更触发,如何减少变更过中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键上线部署系统——Archer。Archer致力于提供一产品线的可迁移发布解决方案,现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等的自动操作。在操作方面,Archer提供了命令行工具作为发起一次上线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收上亿的,但定个1000万的目标是能现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损上千万。
M****点 2018-07-10
中国云计算现状——产品篇
Serverless的之处在于要求序为自己进行改造,其他强调按需付费的计算只是快速释放资源的把戏,Serverless才是正的计算能力集装箱,未来计算场景下的CDN。 三、SaaS产品 其SaaS产品和狭义的云计算没一毛钱关系,广义的云计算连设备租赁和人员外包都能算进去吹水框架,自然也给SaaS云预留了位置。 SaaS产品已经出现并流行了十几二十年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是比各位读者从业年龄还长的老古董,最新流行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用上云走公网和之前走内网区别并不大,用物理机和虚拟机区别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这一点来看,这些SaaS只是云平台的普通用户,和游戏、网站、APP、没有区别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过
看看各的启动优先级也是一个讲究多多的过,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以上内容只能算精简科普版的Linux系统启动过,正式版的启动过可以写十万字,有兴趣的朋友可以自己查维基百科,或我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都上云了,它们就只是闲聊的谈资了。但客户上云就能少招一个研究这事的工师,上云确也很有意义啊。 夜静人稀,沙子龙关好了,一气把六十四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又一笑,“不传!不传!”----老舍《断魂枪》
流****水 2018-07-11
度云企业级运维平台——NoahEE
灰度测试难,怎样通过灵活的部署方式,先进行流量线上测试,待效果达到预期后再扩大部署? 回滚难,发现问题后怎样回滚? 上面的第一个问题,际上在管理中已经解决了,也就是说管理帮我们完成了资源定位工作。其他的问题,NoahEE的部署管理模块通过“分级发布”来解决。在部署管理模块中,我们可以方便的定义并发度、部署步骤、影响范围以及暂停操作等,在部署的过中发现问题即可暂停并回滚至之前的状态。除了部署等操作,部署管理模块还提供了批量执行命令等操作(比如批量启停某一)。如图来总结部署系统的能力: 图4 部署管理 监控管理 在任何工作里,信息掌握的面与否往往关乎到工作的成败。“知己知彼百战不殆”这句话说的就是这个道理。运维工作中,监控系统就是这个让我们做到这点的关键。软硬件是否工作正常,出了问题是否能及时发现与报警,甚至是对异常事件等进行提前预测,都仰仗监控系统。在NoahEE的监控管理模块中,你可以期待面的各种监控相关功能,包括了采集Agent、强大的汇聚计算与指标派生、灵活的报警机制、高效的时序数据库(TSDB)等等。
y****i 2018-07-11
做容器云的最佳用户
前言 我一直瞧不上容器厂商的企话述,连带着看轻了容器技术;但容器技术是有价值的,容器编排技术更是一片大好的发展方向。 我很讨厌这些电线杆广告的传方式:可以现弹性伸缩、自动化运维、持续交付、、秒级部署、高强度容灾、多版本控制等功能,从而改善和解决复杂的IT应用场景。事上是使用者自己设计维护可以弹性伸缩、自动运维、容灾冗余的序,无论是用物理机、虚拟机还是容器(进),本来能弹性的还是能弹性,没容灾的还是在赌命。 合格的架构和运维都瞧不上这些废话,因为十年前我们用裸机就能现这些功能了。但世上没有那么多合格的架构师,云计算要解决的就是缺人的问题。最早的云主机也是类似夸张无赖的传,我第一眼看云主机也觉得是个噱头,这些遗毒至今还在误导客户。本文是为说清容器的能力特性,我们该如何用好容器编排系统。 容器的基础特性 容器和虚拟机都属于IaaS云的范畴,按申请资源量付费,不关注客户业逻辑和访问频率。容器只是隔离出一个进,而虚拟机是模拟了一整操作系统,这是双方的本质区别。
小****园 2018-07-10
让PB级云存储不再神秘
云计算是企业,云平台是我们的供应商不是我们的管理者。TB级用户正是业高速发展的关键时刻,我们更要防备某些吃相难看的混蛋。 云存储相对业简单,遇到野蛮运营的问题主要集中在窃取数据、估算业量、恶意不兼容其他这三方面。 窃取用户数据指的是监守者自盗后自用,要是泄露给第三方那是安事故可以直接报警抓人,但平台方自用用户数据很难抓现行。云存储里大都是多媒体数据,谁敢盗播打官司就好;日志文件加密了就用不了云端大数据分析了,但不挂个人信息的基因测序样本被偷了也不怕。如果客户的特别害怕丢数据,云平台确没手段能自证清白,谁偷过用户数据只能听业内风闻。 正让用户头疼的是平台方会根据计费日志估算你的业规模,就像区保安总共能看到你何时出一样。据不可靠传闻,某厂商本来能到某云厂商母公司数亿美元投资,自吹数据量有数PB,该司投资部去调了一下他们的消费金额就取消投资了。单一个消费总金额就这么麻烦,访问日志可以看文件数量、用户规模分布和大致的动作类型,一个新兴企业最好还是把业分散在两个厂商那里,毕竟他们两家不能核对你的账单。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
w****t 2018-07-10
AIOps中的四大金刚
但在复杂场景下的故障处理、变更管理、容量管理、资源过中,仍需要人来掌控决策的过,这阻碍了运维效率的进一步提升。而AI方法的引入,使得机器能够代替人来做出决策,从而让正意义上的现完自动化成为了可能。 在AIOps的落地施过中,最关键的因素还是人,即AIOps的建设者们。 AIOps作为一个新的技术发展和应用方向,并不是简单地说具备某一种技能或招募一两个大牛就可以完成的,它需要不同角色、多个团队的配合才可以达成。根据近几年来整个业界对AIOps的理解和践,AIOps参与角色的划分也越来越清晰。在百度4年的AIOps践中,我们总结得出了如下四种不可或缺的角色: 运维工师 运维研发工师 平台研发工师 运维AI工师 可以看到,除了运维AI工师外,其他角色并不是AIOps产生之后才出现的,他们在传统运维中也发挥了重要作用。我们今天主要想和大家探讨一下,在AIOps时代,他们的职责究竟发生了哪些变化。为了方便大家理解,我们会基于百度AIOps的践案例,来进行具体说明。 单机房故障自愈场景 单机房故障自愈是一个典型的AIOps落地项目。
追****圣 2018-07-11
给书记省长讲清楚云计算
对于四线城市政府和中型国企,因为现困难资源有限是搞不了云计算的;二三线城市和大型国企才能提供云计算公司感兴趣的资源。
若****客 2018-07-10
IT架构的本质--我的五点感悟
多媒体师最好的情人节礼物会是一个完美的播放器;它可以自助容错选择CDN,可以主动预缓存下一分钟的点播内容,可以完成私有解密编码工作,可以和广告系统解耦独立加载,可以在卡顿时更换线路和存储日志,广告日志和卡顿日志都低速适时后台上传。 2.群集设计通用规则 前端复制后端拆,时改异步,三组件互换 前端复制后端拆,时改异步,IO-算力-空间可互换——要做架构就要上群集,而群集设计调优翻来覆去就是这三板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做水平复制扩容,在网站类应用上,无状态-会话保持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散操作就越爽,但局操作开销更大更难控制。 时改异步是我学的最后一IT技术,绝大部分“时操作”都不是业需求,而是某应用无法看到后端和Peer状态,默认就要时处理结果了。CS模式的时操作会给支撑带来巨大压力,Peer合作的时操作可能会让数据申请方等一宿。
布****五 2018-07-10
如何执行一条命令
部署过可以拆解为两个的步骤,一是新软件包的上传,二是的重新启动。的重新启动不必多说,软件包的上传可能有多种方式,如sftp的集中式,p2p的点对点式等。 监控采集 软件运维过需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策过更是需要采集大量的时信息(前期文章《百度大规模时序数据存储》中介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进状态/系统状态等(如使用grep提取日志,通过ps查询进状态,通过df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都有一个共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。
p****d 2018-07-11
单机房故障自愈--运维的春天
2.即使按照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安水位线:流量处于在安线以下则风险较,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。 如果安水位线提供的容量不足以满足止损,那我们期望使用上两条中间的容量buffer,同时流量调度过中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。 基于降级功能的过载保护 在流量调度前,如果已经出现对应机房的容量过载情况,则动态联动对应机房的降级功能,现故障的恢复。
TOP