关于 桑拿全套服务_薇V:78792796薇常州溧城按摩上门pxux 的搜索结果,共852
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 游有哪些,不同的游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称线)是运维领域最见的业类型,主要涉及线代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的一下,让数据自动生效》中专讨论过)。一般的业线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由线变更触发,如何减少变更过程中人为误操作,提供一个灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了一键线部署系统——Archer。Archer致力于提供一产品线过程的可迁移发布解决方案,实现一键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等过程的自动操作。在操作方面,Archer提供了命令行工具作为发起一次线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为一个环节结合进整条测试发布流水线中。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的见问题及解决方法 基于网络故障及业故障场景的面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经会遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:下游之间存在态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障会给产品线带来局性影响。同时流量调度也无法使得恢复正
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
几个业内好友都明确说一根裸光纤最多跑10G带宽,而于老板明确表示裸光纤任何一个波分(或者不做波分)都可以跑100G以。 后来我和于老板深究原因,不可能几个朋友都骗我或者都蠢,很可能前些年光纤波分机自己只能甩出10G口,或运营商租光纤餐里只有10G规格,给大家造成了裸光纤只能跑10G带宽的印象。同样固有的印象是光纤必须从运营商那里租,而且价格很贵还必须买波分设备等等;其实现在企业专线的市场竞争很充分,拉同裸纤一公里也就小几百块钱,而且短距离裸纤也不值得波分设备,直接对接模块即可。 二、NTD是试金石 我对裸光纤是外汉,但同样的技术误解让我想到了NTP,我一直ntpd和ntpdate当做初中级系统工程师的试金石,分不清就月薪五千,分得清就八千以(2014年市价)。但很多货真价实的IT专家也在此事跌倒,我也希望通过聊清楚一层误会,说明高级工程师该少迷信多思考。 NTP是网络时间协议,它是多项传输、计算、加密技术的核心参数。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例子。这个例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
追****圣 2018-07-11
给书记省长讲清楚云计算
二三线市不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线市对互联网还只是简单的管控,稍有不解可能就会封禁一大批互联网,但一道封网命令就可以毁掉一个云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正,甚至主动出击为正网络保驾护航。 前几条都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动寻求合作。从长周期来看云计算的客户是覆盖行业的,各地内部采购的计算机项目根本不值一提,市场和客户要靠云计算厂商自己去找。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,一旦摸出来案例会迅速推广到国。这个窗口期只有三五年,随着政云企业云被其他公司摸透并推广开,这些项目就从首发明星案例变为普通捆绑销售了。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 前文说的为何要引凤,如何算筑巢。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭电信接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
s****d 2018-07-11
亿元级云用户分析
1.云目的分析 大型云用户云的宏观目的和普通用户类似,但多角色多部的利益诉求非复杂。 降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和合同。 明确责任:客户不想承担各个IT系统的衔接和选型责任,相比软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:云本身并不碰业数据,但云是很好明确业数据存储位置的机会,云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居安思危,在困境危难之中穷极思变,IT技术是企业的潜在增长点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为云目的分析。亿元以器、CDN的订单很多但既无技巧也无利润,这些资源厂商也在跟云厂商学习如何包装项目。 2.客户角色利益分析 大企业多角色之间的利益诉求不同,所以表现形式也不同。我将客户三大角色列出来讨论,销售-售前-项目经理铁三角组合明确客户的诉求,才更好游刃有余的客户。
M****点 2018-07-10
中国云计算现状——产品篇
见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,小量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没大规模对象存储搭建能力,而且对象存储对应用程序友好手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了TB的数据,大数据和AI分析应用自然就部署来了。广域网传输稳定性不够成本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展空间。 大数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,大数据PaaS都用成IaaS定制模板虚拟机了。
无****禾 2018-07-11
云客户需求引导管理--实战型IT太极拳
客户很容易会异想天开,我现在更多是说他们的想法达不到出政绩的目的,大鸣大放后黯然收场,对客户也不是好事。 传统IT企业在198X年成功崛起,是因为他们的技术帮客户延伸了业能力,比如用ATM机帮银行拓展柜台、用更好的技术算账和转账;最近十几年则只能靠软硬件升级来从客户手里钱,那些IT系统只是保命续命却诞生不了新生命。 希望云厂商能够引以为鉴,我也在摸索如何帮客户真正意义推进业。 人员需求 客户需求不能靠谦卑的态度来引导,而是可靠IT技能方案的输出。这对方案推进者,也就是解决方案架构师的个人素质要求非高。技术要可以取信于客户技术团队,又要非了解云产品,还要认可企业级IT模式,这才有可能胜任这项工作,让客户的消费额千万甚至亿。 只了解产品说明书的业售前是完不成这种工作的,从云技术后台转售前的同样也搞不定该工作。解决方案架构师必须是离职后能胜任客户侧技术经理角色,对客户侧的技术环境、业流程非懂行才行。照懂云技术的售前、或懂售前的云技术的标准去选拔都方向不对,解决方案架构师应该是供应商替客户技术运营团队招聘的顾问。
p****d 2018-07-11
单机房故障自愈--运维的春天
本篇主要介绍单机房故障自愈的具体解决方案,内容包括: 单机房故障止损的能力标准 单机房故障自愈的整体架构 单机房故障自愈的见问题和解决方案 单机房故障止损的能力标准 在单机房容灾能力、故障发现能力、流量调度能力基础,业线具备了通过流量调度进行单机房故障止损的条件。理想情况下,我们希望构建一完整、自动、智能的自愈方案,但各个业线的特点不同和基础能力参差不齐,很难一蹴而就,所以我们建立起一自愈能力的等级标准,业线根据自身情况制定相应建设计划,逐步提升自愈能力。 自愈能力等级标准划分为5级,从Level 0的完人工止损,到Level 4的自动化、智能化止损。对于Level0、Level1,人工感知止损面临着速度慢、误操作、场景覆盖不、风险控制能力不足等问题;、Level2则实现了止损操作的平台化、预案化,一定程度提升了止损效率;Level3则实现了自动化报警联动故障止损,实现了止损效率的进一步提升。2016年,百度大部分核心产品线已经实现了Level 2、Level 3的自动止损能力,但在场景覆盖与风险控制仍存在不足。由此,Level 4智能自愈方案应运而生。
M****H 2018-07-11
故障定位场景下的数据可视化实践
多个维度关联分析 细分维度的故障所带来的表象可能会在多个维度均有表现,比如整体的访问拒绝升,我们会发现分机房的拒绝量升,也看到分模块的拒绝升。那么我们如何确认故障的根因是来源于某个机房还是某个模块,还是这两者的交叉维度,即某个机房的某个模块导致的问题。 矩阵热力图可以解决这一问题。将需要做分析的两个维度分别作为横纵坐标,通过阶梯的阈值颜色将对应交叉维度的取值展现再坐标。我们便可非直观的看到这这两个维度对于整个业的影响情况,如下图所示: 我们可以看到,从纵向的分模块维度,可以看到Module 4在多个机房都有明显的访问拒绝情况,而在横向分机房维度,则没有明显的特征。则说明是Module 4模块导致的问题。 嵌维度下钻分析 类似于国家-省份-市的行政区域划分,区域-机房-机器的部署划分,我们可以看到很多维度之间存在着层次嵌的关系。我们故障定位的思路也是如此,从整体到局部逐步分层下钻定位。 我们提供了多维度展开报表功能支持这种下钻分析。
若****客 2018-07-10
IT架构的本质--我的五点感悟
不同的业系统的架构之术完不同,能来汇总借鉴的只有这几条简单的道理。如果一个架构师只是炫耀具体优化架构的手法,却闭口不谈选型的道理,他们其实是在简单用公司业尝试赌博。 如果我们有架构之道做思想支撑,即使接手新业类型,庖丁可以解牛也可以杀猪,我们一样能游刃有余心里不慌。我曾经接手三种生僻晦涩的业照本文的原理去拆解和规划,就没有什么特别难的。
小****园 2018-07-10
让PB级云存储不再神秘
根据这个存储的业类型可以确定带宽接入成本,最低可能只是个维护带宽加几光纤,最高可能是运营商的大客户。 资源闲置成本,一般占总成本的5-50%。 私有群集要计算多久才能填满空间,公有群集要为潜在需求预留足够资源。 人力/软件成本,一般占总成本的20-30%。 开发一对象存储然后公有云磨练几年,这需要投入亿元以,分摊到一个项目也有数百万投入。厂商的人力成本很多是用在压缩硬件、机柜、带宽、闲置成本,节省了人力成本其他开销就会增大。 在千万级别项目投入里,金融成本也是很大的成本。建设一个存储群集的总成本会和买一硬件存储柜的价格差不多,报价不便宜但考虑金融成本就很合算了。假设客户买一硬件存储柜是一次性掏5000万;而对象存储群集硬件占比不高,机柜、带宽人力等成本都是月缴纳五年才凑到5000万的。 述数据我们已经可以预估出新建一个存储群集的实际成本,我们这些钱和公有云价格进行对比,如果私有云成本比公有云高太多,我们也能说采购决策层继续用公有云。 在群集运营过程中规模会受到IDC环境的限制,机柜和带宽不是想买就有的。
TOP