关于 氯化钾多少钱一瓶【V信;799.196.362】镣 的搜索结果,共1242
c****2 2018-07-10
个性推荐(
背景介绍 在网络技术不断发展和电子商务规模不断扩大的背景下,商品数量和种类快速增长,用户需要花费大量时间才能找到自己想买的商品,这就是息超载问题。为了解决这个难题,个性推荐系统(Recommender System)应运而生。 个性推荐系统是息过滤系统(Information Filtering System)的子集,它可以用在很领域,如电影、音乐、电商和 Feed 流推荐等。个性推荐系统通过分析、挖掘用户行为,发现用户的个性需求与兴趣特点,将用户可能感兴趣的息或商品推荐给用户。与搜索引擎不同,个性推荐系统不需要用户准确地描述出自己的需求,而是根据用户的历史行为进行建模,主动提供满足用户兴趣和需求的息。 1994年明尼苏达大学推出的GroupLens系统[1]般被认为是个性推荐系统成为个相对独立的研究方向的标志。该系统首次提出了基于协同过滤来完成推荐任务的思想,此后,基于该模型的协同过滤推荐引领了个性推荐系统十几年的发展方向。
摩****5 2018-07-11
都是防晒
l****m 2018-07-10
词向量(
XX是个|V|×|V||V|×|V| 大小的矩阵,XijXij表示在所有语料中,词汇表VV(vocabulary)中第i个词和第j个词同时出现的词数,|V||V|为词汇表的大小。对XX做矩阵分解(如奇异值分解,Singular Value Decomposition [5]),得到的UU即视为所有词的词向量: X=USVTX=USVT 但这样的传统做法有很问题: 由于很词没有出现,导致矩阵极其稀疏,因此需要对词频做额外处理来达到好的矩阵分解效果; 矩阵非常大,维度太高(通常达到106×106106×106的数量级); 需要手动去掉停用词(如although, a,...),不然这些频繁出现的词也会影响矩阵分解的效果。 基于神经网络的模型不需要计算和存储个在全语料上统计产生的大表,而是通过学习语义息得到词向量,因此能很好地解决以上问题。在本章里,我们将展示基于神经网络训练词向量的细节,以及如何用PaddlePaddle训练个词向量模型。 效果展示 本章中,当词向量训练好后,我们可以用数据可视算法t-SNE[4]画出词语特征在二维上的投影(如下图所示)。
TOP