关于 永川哪里有小姐服务大保健〖8843O306VX〗服务真实抵染敬 的搜索结果,共1438
h****e 2018-07-10
程序:我从来?
Check Agent:提供BNS例的康检查功能,用户通过在Web页面对每一个例配置康检查的方式,机器上的Check Agent会主动探测所例的运行状况,并将康检查的结果上报给Cache层,同时更新数据库内容。 总结 BNS系统满足间交互中常见的的资源定位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、定位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从来?该往去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎家积极留言。
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也无法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更范围的影响。 要求:容量建设需要对于每个逻辑单元都要明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要提前的预估,为重事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:上下游使用固定IP或固定机器名进行直接连接。 问题:单机房故障发生时,关联的上下游之间无法进行快速的流量调度止损。 要求:线上关联不允许使用固定IP或机器名链接,需使用具备流量调度能力的上下游连接方式以现上下游依赖解耦,下游发生单机房故障,可以快速调整路由比例现止损。
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
该解决方案策略和架构解耦,并且托管到高可用的自动化运维平台之上,现了业在任意单个机房故障情况下皆可自愈的效果。 截至目前该方案已覆盖百度多数核心产品,止损效率较人工处理提升60%以上。典型案例: 在8月28日某产品在单机房故障发生后1min55s完成止损。 在后续文章中我们会继续介绍单机房故障自愈的更多详细内容,请期待! 单机房故障容灾能力的建设 在容灾能力建设中些常见问题? 如何证明已经具备单机房容灾能力? 单机房故障人工止损方法 人工止损时如何感知故障? 人工止损时如何收集故障信息? 人工止损时如何进行流量调度? 单机房故障机器人止损方法 如何设计单机房故障自愈整体方案? 如何降低流量调度风险? 如何应对不同业流量调度策略和平台的差异?
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
三、正确的时间是向量 Linux环境下两个常用工具,NTPD和ntpdate。NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序壮性和业安全性,甚至部分程序崩溃的稀糊涂。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手;而盯客户的套路和百万级销售类似,工作力度加三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收上亿的,但定个1000万的目标是能现的;如果1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是订单曲线突破的好选项,还是AI和数据项目的基石,我们和客户讲的是技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损上千万。
M****点 2018-07-10
中国云计算现状——产品篇
先说IT咨询,过去云计算平台吸引到的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为一时一千元的咨询付费。现在高净值客户放出来的云计算咨询标了却没人投标,因为型云计算企业因为资质、高层合作、客户关系等原因没投标的机会。 我们经常遇到咨询标,但我们也不想投这个标。咨询标的交付物就是各种文档和报表,互联网公司的技术积淀都在技术部,技术人员最烦的就是写文档,而且技术人员匮乏的想象力和沟通能力并不适合做咨询标,让售前承担技术文档书写也扛不住。传统IT外企做云IT咨询流程上没问题,但技术水平太差,也不被政策扶持。此外还个哈哈哈哈的杀器让我们不能投咨询标,投了咨询标就不能投施标了,施标的金额要比咨询标很多。 到了施阶段,其矛盾和咨询标差不多,既要干活又要写文档,而且验收者并不专业,施工作传统厂商会抢着压价,还会各种意外拖进度抢进度,各互联网企业的施团队根本支撑不下来。传统厂商虽然压价抢标,但他们要是施云计算项目的人才,互联网公司加价三倍挖走谢谢。
追****圣 2018-07-11
给书记省长讲清楚云计算
第三类是外企云厂商,这类厂商是被广阔的中国市场吸引过来的,也兼顾外企中国分部的客户。这类厂商在国内发展都不太顺,和他们沟通主要看他们什么合作诚意,是否穷极思变。 最后一类是系统集成企业,这类厂商已经地方政企几十年了。他们最的优点和缺点都是为政府和国企为生,他们可以买技术搭建出云平台,但他们建好云平台的目的是再卖给本地政府和国企。这类企业需要完成从供应商到合作方的转变。 云计算不是万能药,它无法解决些问题。 在地方政企看来,云计算只是一种商业形式,不能对它报以不切际的期望值。 云计算行业不需要量雇佣本地劳动力,无法解决批就业问题;云计算核心员工会呆在一线城市远程操控,很难将云计算人才引进到当地。 云计算不会产生污,所以不用考虑环减排问题,但其带来的环节能问题很严重,每个数据中心都会占用量电力。 对于四线城市政府和中型国企,因为现困难资源限是搞不了云计算的;二三线城市和型国企才能提供云计算公司感兴趣的资源。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
个客户非常信任某个云销售,他告诉该销售,虽然某高层合作,某云也说报价肯定比某云低5%;但是某云的机制问题,出故障从来都是衙门话,每次故障都要客户去乱猜和背锅。最终这个单子在客户执行层的暗助之下,该云快速把业切过来并坐站住了,这份暗中相助就是靠个人商誉带来的信任。 我和客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。面对意外故障,我们信心向客户证明,换了其他厂商也一样会挂;面对人为故障,踏认错是对客户的最后尊重,而公开事也是逼着内部不会重蹈覆辙犯同样的错误。 过去家卖IDC、CDN、器和软硬件积累的个人商誉,是可以应用到云计算领域的。而云的高科技光环褪去、产品同质化以后,企业的核心竞争力仍然是商誉的销售-售前-售后团队,这类人才远是稀缺资源。 附录 请各位多琢磨评估本厂的云到底些组件是靠谱的,不要让信赖你的客户受伤又受骗。
流****水 2018-07-11
度云企业级运维平台——NoahEE
资产管理 在机房,各种各样的器、网络设备和安全设备7x24时的运转,为我们的业提供了硬件障,是企业的重要资产。各种设备的物理损坏、升级、新增、搬迁等等都在考验着机房运维人员的能力。怎样维护这些资产并记录信息,是个很重要的问题,搞得不好,这些资产可能变成运维人员的“包袱”,越多越头疼。 对这些设备的运维操作,通常都涉及不少的物理操作,比如说更换损坏的硬盘,增加内存条等等。这涉及到几个要解决的问题: 故障如何及时发现?发现后由谁来进行修复? 物理操作维护怎样反应到系统? 不同角色(职责)的运维人员之间如何协同操作? 对于故障处理与修复,NoahEE通过故障自动发现与工单流程解决了上面的问题。系统自动探测故障放入故障池,并建立故障工单,由相应的人员进行操作。另外,NoahEE提供了不同的工单流程覆盖了日常机房运维中的操作,从设备采购入库、上架、机架变更,直到设备下架、出库全生命周期覆盖,做到所运维操作记录可追溯。了资产管理,运维人员可以在器完成入库、上架工单后即可在管理中看到该器并进行管理,无须任何其他操作。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为上层托管平台的底层工具链,为PaaS平台提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线上故障; 业的多地域部署; 多种网络环境及包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合上面场景,向家介绍百度持续部署是如何现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行际任。涉及包及不同网络环境的部署会进行中转下载。 解决方案 各业线拥各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一套既灵活又完整的包规范。
小****园 2018-07-10
让PB级云存储不再神秘
云存储都是多媒体数据,谁敢盗播打官司就好;日志文件加密了就用不了云端数据分析了,但不挂个人信息的基因测序样本被偷了也不怕。如果客户的特别害怕丢数据,云平台确没手段能自证清白,谁偷过用户数据只能听业内风闻。 正让用户头疼的是平台方会根据计费日志估算你的业规模,就像安总共能看到你何时出门一样。据不可靠传闻,某厂商本来能拿到某云厂商母公司数亿美元投资,自吹数据量数PB,该司投资部去调了一下他们的消费金额就取消投资了。单一个消费总金额就这么麻烦,访问日志可以看文件数量、用户规模分布和致的动作类型,一个新兴企业最好还是把业分散在两个厂商那,毕竟他们两家不能核对你的账单。 最后一条就是些领先厂直接压制,故意做技术无关的不兼容、甚至拒绝、甚至从其他层面正面打压业。这就不举例了,太明显针对单一厂商。如果只是技术不兼容那算和其他云平台恶意竞争,如果到了云平台明抢客户自身业的阶段,技术采购决策人请把风险告知公司决策层,该妥协还是硬扛不是你的职责范围。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
布****五 2018-07-10
如何执行一条命令
部署过程可以拆解为两个的步骤,一是新软件包的上传,二是进程的重新启动。进程的重新启动不必多说,软件包的上传可能多种方式,如sftp的集中式,p2p的点对点式等。 监控采集 软件运维过程需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策过程更是需要采集量的时信息(前期文章《百度规模时序数据存储》中介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进程状态/系统状态等(如使用grep提取日志,通过ps查询进程状态,通过df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都一个共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在器上执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维职位展望
3、进传统行业继续做运维;笔者就是在一个通讯公司工作,我可以很乐观的说云计算会对公司造成限的技术革新,比如说现OS的虚拟化。我们需要的SIP必须亲自搭建,阿新浪都没得卖,甚至因为硬件和网络限制让我们很难使用虚拟机;而外宣网站一类的东西根本不是我们的核心竞争力,能用就好效率低一些没关系。除了通讯公司之外,生产领域(比如管理生产线)也类似的顾虑,云计算的优势和公司的业需求完全不沾边,所以这类公司的运维可能会是最后的运维。家找工作的时候都习惯找网站相关的工作,但你学过Web就一定要找网站工作是挺蠢的行为,危邦不入乱邦不居,最好不要涉足一个没前途的行业。生产领域的公司因为运维涉及到在在的钱,所以运维人员待遇高(都是专技术难培养)、做的事情少(自发做事多了会出错,不如找厂商技术支持),只是跳槽的难度比通用运维要一些(都是专技术不通用) 4、彻底转型,做和计算机无关的工作;选这条路的人一部分是自己觉悟或巧机缘,但另一部分人是的适应不了环境变化,希望各位不要被淘汰掉。
若****客 2018-07-10
IT架构的本质--我的五点感悟
前端器压力了就多做水平复制扩容,在网站类应用上,无状态-会话持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散微操作就越爽,但全局操作开销更更难控制。 时改异步是我学的最后一门IT技术,绝部分“时操作”都不是业需求,而是某应用无法看到后端和Peer状态,默认就要时处理结果了。CS模式的时操作会给支撑带来巨压力,Peer合作的时操作可能会让数据申请方等一宿。架构师将一个无脑拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损余的选型。比如数据压缩技术就是用算力资源来置换IO和空间,缓存技术是用空间和IO来缓解算力压力,每个新选型都会带来细节上的万千变化,但每种变化都是符合自然规律章可循的。 一个经典微机系统就是中央处理器+主存储器+IO设备,这几个概念居然和群集性能规划是一一对应。 3.
小****君 2018-07-11
踏云落地--谈IT就业趋势
云厂商集采优势,云厂商多给点资源就能省下很多优化工作;部分情况云厂商还数据优势,比如基于本站数据做风控需要反复调试,而对接云厂商外部参考画像会简单很多。5.技术牛都是让变态业需求给压出来的,如果公司技术牛,那各种需求就来了,但如果没技术牛,公司也会压缩自己的IT难度。比如搞促秒杀就要准备2000万云费,业部门就会掂量成本。客户要使用PaaS云就要按照云厂商的是数据和业的格式约定。我们看到越来越多的证据,了对象存储就不用招存储工程师,了鉴黄和人脸识别就不用自己推演模型,是反作弊系统就不用自己研究刷单,了IM就不用自己做openfire。正的行业精英是不会护食眼前这碗饭,找到问题最优解比住铁饭碗重要的多。当精英们无事可做的时候,怕钱给够了也很容易跳槽,他们将会富集在云计算公司、IT部门和独角兽企业,而IT部门和创业团队留不住技术牛了。精英们遗世独立,让普通工程师去买云了,对其他工程师可不是好事。
TOP