关于 灰色词百度竞价推广σσ:7354130 的搜索结果,共502
y****q 2020-09-01
百度app t7浏览内核广告屏蔽功能导致网页崩溃
我的蜀韵文学网 m.sanwenzx.cn 在所有除外的浏览器都能正常使用评论功能。而这个就是不让网站显示评论。广告屏蔽功能关闭就正常了。
l****m 2018-07-10
向量(一)
文章结构: 向量 背景介绍 效果展示 模型概览 数据准备 编程实现 模型应用 总结 参考文献 本教程源代码目录在book/word2vec,初次使用请您参考Book文档使用说明。 背景介绍 本章我们介绍的向量表征,也称为word embedding。向量是自然语言处理中常见的一个操作,是搜索引擎、广告系统、荐系统等互联网服务背后常见的基础技术。 在这些互联网服务里,我们经常要比较两个或者两段文本之间的相关性。为了做这样的比较,我们往往先要把表示成计算机适合处理的方式。最自然的方式恐怕莫过于向量空间模型(vector space model)。 在这种方式里,每个被表示成一个实数向量(one-hot vector),其长为字典大小,每个维对应一个字典里的每个,除了这个对应维上的值是1,其他元素都是0。 One-hot vector虽然自然,但是用处有限。比如,在互联网广告系统里,如果用户输入的query是“母亲节”,而有一个广告的关键是“康乃馨”。
****ac 2018-07-12
亿元免费算力 | 大脑AI Studio重磅出算力支持计划
“提供总计1亿元免费算力,助力开发者成功”——大脑AI Studio 大数据、大模型、大算力是深学习发展的必备因素,算力的重要性不言而喻。4月23日,首届 WAVE SUMMIT 2019深学习开发者峰会,一站式开发平台 AI Studio 重磅出算力支持计划:豪掷1亿元免费算力,为普通开发者破除算力桎梏。 大脑AI Studio 大脑AI Studio是集合AI教程、代码环境、算法算力、数据集和比赛的一站式学习、开发、交流平台。该平台旨在帮助开发者迅速掌握AI开发知识,并熟悉模型创建,训练及部署的全过程。 大脑AI Studio中,项目有两个模式::一人一卡(单机)和远程集群模式。 其中一人一卡模式的配置此前以CPU为主。为了解决该模式下性能不足的问题,大脑AI Studio准备了大量的Tesla V100训练卡和相关资源,总值1亿人民币。 Tesla V100训练卡是当前性能最好的工业级训练卡之一。根据英伟达的说明, 该GPU的性能是单核CPU的47倍。此举将普惠大脑AI Studio用户,破除用户的算力困境。
j****2 2018-07-10
大脑开放日来袭 24种全新AI能力呈现
3月20日,首场大脑开放日全新登场,介绍了全新开放的24种全新AI能力,AI赋能市政、物流、教育等行业的20个案例,也为向开发者、行业人士展现了如何搭上AI开放生态的高速列车。 大脑开放日来袭 作为在人工智能领域多年研究成果的集大成者,大脑正在飞速进步着。自2016年启动开放以来,大脑目前已经是服务规模最大的AI开放平台,开放了158项AI能力,24小时快速集成,开发者数量超过100万,面向广泛的企业和开发者提供最先进、最全面的AI能力,不断降低AI应用落地的门槛。 AI技术生态部总经理喻友平谈到,“在大脑的开放生态中,开发者一直是最为重要的一环。大脑开放能力不断加速,有很多有值的技术难以被开发者了解。2019年大脑开放日全新登场,希望为AI开发者提供及时、全面、近距离地了解大脑最新AI产品和案例,且能深、持续交流的平台。” AI技术生态部总经理喻友平 首期开放日,喻友平介绍了大脑开源深学习平台PaddlePaddle以及通用AI能力两方面的技术和产品更新,以及大脑在市政、物流、教育等行业的落地案例,与开发者们进行深交流。
双****4 2018-07-10
向量(三)
key, value in six.iteritems(word_dict) if value == most_possible_word_index ][0]) 由于向量矩阵本身比较稀疏,训练的过程如果要达到一定的精耗时会比较长。
用****在 2018-07-10
向量(二)
Skip-gram模型 如上图所示,Skip-gram模型的具体做法是,将一个向量映射到2n2n个向量(2n2n表示当前输入的前后各nn个),然后分别通过softmax得到这2n2n个的分类损失值之和。 数据准备 数据介绍 本教程使用Penn Treebank (PTB)(经Tomas Mikolov预处理过的版本)数据集。PTB数据集较小,训练速快,应用于Mikolov的公开语言模型训练工具[2]中。其统计情况如下: 本章训练的是5-gram模型,表示在PaddlePaddle训练时,每条数据的前4个用来预测第5个。PaddlePaddle提供了对应PTB数据集的python包paddle.dataset.imikolov,自动做数据的下载与预处理,方便大家使用。 数据预处理 预处理会把数据集中的每一句话前后加上开始符号 s 以及结束符号 e 。然后依据窗口大小(本教程中为5),从头到尾每次向右滑动窗口并生成一条数据。
3****3 2018-07-10
智能运维工程架构
背景:为什么要做智能运维 云智能运维团队在运维工具和平台研发方向历史悠久,支撑了全数十万规模的服务器上的运维服务,所提供的服务包括服务管理、资源定位、监控、部署、分布式任务调等等。最近几年,团队着力于发展智能化运维能力以及AIOps产品化建设。 众所周知,除了搜索业务之外,还有很多其他的业务线,有像地图、科、知道、网盘这样的老牌业务,也有诸如像教育、医疗这样的新兴业务,每个业务在规模上、服务架构上都有很大差异。业务本身对稳定性的要求很高,需要保持99.995%的高可用,同时在业务上云的背景下,虚拟化、混合云等都给我们带来了新的挑战。 运维经历了从脚本 工具、基础运维平台、开放可定制运维平台到我们现在的智能运维平台,这样四个阶段的转变。过去运维的核心目标是提升效果,比如持续交付的速、服务稳定性、运营成本等。
也****里 2020-08-29
百度carlife不能跟百度地图同步收藏夹非常不方便请改进!
啥时候同账号的情况下,carlife和地图历史轨迹数据同步到一起
c****2 2018-07-10
个性化荐(一)
候选生成网络从万量级的视频库中生成上个候选,排序网络对候选进行打分排序,输出排名最高的数十个结果。系统结构如图1所示: 图1. YouTube 个性化荐系统结构 候选生成网络(Candidate Generation Network) 候选生成网络将荐问题建模为一个类别数极大的多类分类问题:对于一个Youtube用户,使用其观看历史(视频ID)、搜索记录(search tokens)、人口学信息(如地理位置、用户登录设备)、二值特征(如性别,是否登录)和连续特征(如用户年龄)等,对视频库中所有视频进行多分类,得到每一类别的分类结果(即每一个视频的荐概率),最终输出概率较高的几个视频。 首先,将观看历史及搜索记录这类历史信息,映射为向量后取平均值得到定长表示;同时,输入人口学特征以优化新用户的荐效果,并将二值特征和连续特征归一化处理到[0, 1]范围。接下来,将所有特征表示拼接为一个向量,并输入给非线形多层感知器(MLP,详见识别数字教程)处理。
C****X 2018-07-10
群雄逐“图”,缘何备受关注?
线的颜、道路的隔离带、隔离带的材质甚至道路上的箭头、文字内容、所在位置都会有相应的描述…… 高精地图针对道路形状的准确描绘,甚至可以精确到每个车道的坡、曲率、航向、高程等,同时为了自动驾驶的考虑,甚至每条车道的限速,荐速也会一并提供。 高精地图中的道路标识线及路牌信息 (图片来源于文章《高精地图在无人驾驶中的应用》) 目前,尽管自动驾驶科技公司、图商以及传统车企对高精地图的定义尚未统一化,但高精地图的绝对坐标精更高,包含的道路交通信息更丰富(如可分为基础层、道路信息层、周围环境信息层和其他信息层)等方面确实已经成为区别传统电子导航地图的显著特征。 此外,由于路网每天都有更新变化,如整修、道路标识线磨损及重漆、交通标示改变等,这些都需要及时反馈在高精地图上以确保无人车行驶安全,也就同时要求高精地图有更强的数据实时更新功能。 关于高精地图,怎么说 作为致力于高精地图研发的科技企业,内部人员一表示将高精地图看做是Apollo 云端服务的核心数据,足知关键!
s****5 2018-07-10
个性化荐(二)
总结 本章介绍了传统的个性化荐系统方法和YouTube的深神经网络个性化荐系统,并以电影荐为例,使用PaddlePaddle训练了一个个性化荐神经网络模型。个性化荐系统几乎涵盖了电商系统、社交网络、广荐、搜索引擎等领域的方方面面,而在图像处理、自然语言处理等领域已经发挥重要作用的深学习技术,也将会在个性化荐系统领域大放异彩。 参考文献 P. Resnick, N. Iacovou, etc. “GroupLens: An Open Architecture for Collaborative Filtering of Netnews”, Proceedings of ACM Conference on Computer Supported Cooperative Work, CSCW 1994. pp.175-186. Sarwar, Badrul, et al. "Item-based collaborative filtering recommendation algorithms."
TOP