关于 皖西卫生职业学院附近找妹子服务〖97860638微信〗 的搜索结果,共867
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维位展望
2、进行云计算器维护;几大云供应商自己也要维护器,那些大中型企肯定会自己做私有云,在这个云计算平台里也是需要运维人员进行从低端监控到高端架构的一系列维护工作,但自动化运维技术会让运维人员的数量大大减少,可能每个公司都只有一两个小团队了。 3、进传统行继续做运维;笔者就是在一个通讯公司工作,我可以很乐观的说云计算会对公司造成有限的技术革新,比如说实现OS的虚拟化。我们需要的SIP必须亲自搭建,阿里盛大新浪都没得卖,甚至因为硬件和网络限制让我们很难使用虚拟机;而外宣网站一类的东西根本不是我们的核心竞争力,能用就好效率低一些没关系。除了通讯公司之外,产领域(比如管理产线)也有类似的顾虑,云计算的优势和公司的需求完全不沾边,所以这类公司的运维可能会是最后的运维。大家工作的时候都习惯网站相关的工作,但你过Web就一定要网站工作是挺蠢的行为,危邦不入乱邦不居,最好不要涉足一个没有前途的行
追****圣 2018-07-11
给书记省长讲清楚云计算
人不仅要住房还可以盖房,不仅会逛超市也会开菜市场。 政府和大型国企不仅能采购云计算,早晚也会走向发展云计算的路。 本文不谈任何技术细节和商情怀,而是从政企的角度说明什么是云计算。 本文包含如下内容。 从大时代背景来看什么是云计算,云计算为什么会兴起。 云计算如何带动地方经济,这是个不需要物流就可以全球的行。 做云计算要满足哪些条件,如何才能筑巢引凤。 挑选合格的云计算合作厂商,每类厂商有哪些特点。 云计算不是万能药,它无法解决哪些问题。 什么是云计算 20年来,互联网引爆了全球的息技术革命,我国借助这次技术革命的大好机会,已经追上乃至领跑此次技术革命。 互联网技术深刻的改变着我们的活,其行态也在逐步分化扩大,这一现状客观促进了云计算技术的发展。 上世纪80年代,计算机仅应用于科研等少数行,全国计算机从人员不超过万人,从人员大都有很深的术背景。 上世纪90年代,门户、论坛、邮件系统开始影响部分群众的活,国内从人员约为十万人,可以分为软件和硬件两类工程师。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响可用性 回顾2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭州电接入故障,中断小时级别 2017年1月某天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响的可用性并且会给公司带来直接或间接的损失。
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
NTPD做时间调整会有效减少这类情形,它不是简单的龟速调整时间,而是有柔性时间调整策略,让时间线的跃变和调整尽量少影响(详情见录实验);也不会盲目任远端时钟源,甚至固执的拒绝同步时间。NTPD本机时刻有可能不对,但不会忽快忽慢甚至停滞,NTPD通过多次收发包选择权威稳定的时间源,算出双方间的网络延迟,然后才会采新的时刻进行时钟同步。 五、误解的根源和影响 因为NTPD不盲从其他时间源,让老一辈IT人会留下NTPD不好用、不靠谱的误会。2005年个人测试用虚拟机的时间经常走慢,到2010年虚拟机还要防范时间停滞的Bug。即使你用物理机投入产,网络延迟仍然不确定,且要观测NTPD同步效果需要时间。我们很难成功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背上黑锅了。 真有TOP10的互联网公司和上亿国家级项目里用ntpdate+crond,上一代架构师为什么有这个误会无人深究,下一代人将误会固化为偏见,新一代人将偏见神化为迷
流****水 2018-07-11
度云企级运维平台——NoahEE
图1 NoahEE概览 接下来,我们把这艘诺亚方舟分解开来,距离观察一下这艘船的方方面面。 管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台上各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期较为简单时,一个可能部署在几台甚至一台机器上,进行变更等运维操作简单直接,登录到机器上人工操作就好了。随着的发展,分布式应用与的广泛使用,我们越来越多的面临着运维场景与运维执行之间的脱节。 举个例,今天17:00开始对X机房的地图导航模块进行升级。对于产品研发的同来说,关注点是语义明确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在哪里。在规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部门(资源的隔离)?权限又该如何控制?
TOP