关于 空钟桑拿全套服务 78792796-微V号吉县小妹足浴SAP会 的搜索结果,共1005
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都采用Crond+ntpdate的方式同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定渐进增长到t2和t3。除了少数商业数据库自带时源以外,大部分业对系统时间是盲目信任,不相信t1越过t2直接达到t3(即断档跃变),而t2减去t1得到负数或者0(即时停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能带来时间的断档跃变或者停滞和回逆。时间不稳威胁到的程序健壮性和业性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不出现算出负利息或倒扣费的情况,但业混乱是免不了的。
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了哪些实例,规模、部署情况、实例运行状况如何? 2.我从哪里来? 的上游有哪些,不同的上游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器上部署信息(机器IP,部署路径,配置,端口信息),的实例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
若****客 2018-07-10
IT架构的本质--我的五点感悟
架构师将一个无脑大事拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做局事保障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存间是可以互换的,架构师要完成补不而损有余的选型。比如数据压缩技术就是用算力资源来置换IO和间,缓存技术是用间和IO来缓解算力压力,每个新选型都带来细节上的万千变化,但每种变化都是符合自然规律有章可循的。 一个经典机系统就是中央处理器+主存储器+IO设备,这几个概念居然和群集性能规划是一一对应。 3. 理解硬件天性 角色选型时要看硬件的天然特性 别让硬盘扛性能,别让内存保持久,别让网线扛稳定。 架构层软件技术已经够成熟,所谓技术选型不如说是适应场景;在做具体角色选型时,最深度也最易忽视的原则是顺应硬件天性。 我的精神导师说过,如果一个依赖硬盘,那这个就不适合扛性能压力。我经常将读写引到/dev/shm;SSD盘让很多细节调优聊胜于无,还让Fat32枯木逢春;个别队列和分布式存储在意硬盘的性能力,但都是应用了顺序读写内容,且不介意磁盘间浪费。
追****圣 2018-07-11
给书记省长讲清楚云计算
云基地是无烟工业,并不需要雇佣大量人口,对直接促进就业帮助不大;但云计算没有实体矿产投入和物品产出,只需要大量电力启动电脑也不产生大量污染。 云基地像电视台和信塔一样,通过产生和扩散数据信息对客户提供,这些信息的传输没有物流成本,光速直达球每个角落。 因为云基地球客户,所以云基地可创造极高的营收,但不能简单的计入地方政府的GDP。一个耗电三千瓦的机柜加附属间占地5平方米,如果云计算资源部售出,每年可产生20万元以上的营收。但是这些营收计入云计算公司所在地,而非云基地机房所在地,云基地只能被当做外地公司在本地租赁的库房,只在所在地消费掉地租、电费和网费。各地政府只有提供够的优惠政策,才能吸引云计算公司在当地成立独立税核算的分支机构;有长久规划的地方政府甚至可以将云计算人才逐步引入当地,形成高科技硅谷园区。 大型国企要做云计算的主要问题是缺乏人才,在私企做云计算的收入是国企的3倍以上,国企很难保证核心员工不流失。国企如何收罗高薪互联网人才这个问题,可能不是靠几个户口指标能解决的。
w****0 2018-07-11
单机房故障自愈-黎明之战
本文主要介绍单机房故障自愈前需要进行的准备工作,具体包括: 单机房容灾能力建设中遇到的常见问题及解决方法 基于网络故障及业故障场景的面故障发现能力 百度统一前端(BFE)和百度名字(BNS)的流量调度能力 单机房容灾能力--常见问题 单机房故障场景下,流量调度是最简单且最有效的止损手段,但我们发现业线经常遇到如下问题导致无法通过流量调度进行止损: 1.存在单点 描述:系统内只有一个实例或者多个实例部部署在同一物理机房的程序模块即为单点。 问题:单点所在机房或单点自身发生故障时,无法通过流量调度、主备切换等手段进行快速止损。 要求:浏览请求的处理,不能存在单点;提交请求的处理,若无法消除单点(如有序提交场景下的ID分配),则需要有完整的备份方案(热备或者冷备)保障单机房故障时,可快速切换至其他机房。 2.跨机房混联 描述:上下游之间存在常态的跨机房混联。 问题:逻辑单元未隔离在独立的物理范围内,单机房故障给产品线带来局性影响。同时流量调度也无法使得恢复正常。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
我不将它压到箱底,偶尔我也练练聊聊,纪念一下那个搞技术的黄金时代。 本文聊个很有嚼头的技术问题,Linux系统的启动过程,当我们不用自己安装系统以后,丧失了这么多乐趣。 正文 1.主板加电和硬件自检,就是开机第一屏启动界面。 CPU和内存插得有问题滴滴乱叫,而网卡和硬盘插不插都无所谓,因为这些外设都不属于经典的计算机系统。 早期内存器一般有内存检测的功能,但256G内存的器启动的速度也太慢了,重启一分能启动的还能恢复,重启三分可能群集性状就变了,所以我们经常顺手就把他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板大都是BIOS引导,也有是UEFI引导,但从器用户看区别也不大。 主板可选从USB/SATA/NIC这几类接口上获取引导数据,而且可以排队式加载,第一个加载不成功就尝试第二个。系统安装镜像都有个防止误操作的倒计时,而网络引导一般是排在末位,硬盘引导就是通用的系统启动的方式。 爱折腾桌面电脑的朋友从这一步开始就玩双系统/WINPE/U盘版Ubuntu/无盘工作站了,还好器维护人员比较单纯专一。
s****d 2018-07-11
亿元级云用户分析
版本发布和数字化转型——无论是观的版本发布还是宏观的数字化转型,其实都和上云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。 资源持续--亿元大客户不要求云平台永不故障,但要云平台承诺清晰SLA,事后给个合理的故障报告。 后记 如我在《复制阿里云并不难》中所说的,一个云行业半个IT界”,云行业将垄断IT界一半的营收和利润。本文讨论的亿元大项目,目标就是下IT圈的营收上限。现在亿元大单都是云厂商在侵入系统集成商的势力范围,后面云厂商得到越来越多的亿元大单。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)实现了智能流量调度与自动止损能力。同时,基于实时容量与实时流量调度自动止损策略与管控风险,实现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且给公司带来直接或间接的损失。
小****园 2018-07-10
让PB级云存储不再神秘
只要有100个并发连接,群集的访问压力分布均匀。一个PB级存储系统,存储机怎么也有20台以上,每台主机提供1000Mb带宽用于对外,这就是20Gb总出口带宽了,群集默认性能就不太差。数据都是顺序写入硬盘,SATA盘也能达到极高写入性能。读取数据的性能也不是大问题,互联网类型数据的缓存命中功率极高,一台缓存可以减负一大堆元数据和存储;大数据一下要读几百T的数据必然是多链接,每个存储节点都分到数据读取任的,而且应用要读这么多数据不要秒级完成任,五分内完成下载就是闪电速度了。 回收间的性能 前文提到数据都是顺序写硬盘,这样文件删除时回收间很慢,但4T盘浪费50%的间也比买15K盘或者SSD合算,某些规模或超有钱云存储都没做回收间这个功能。 当文件有计划内滚动删除需求需求,比如说互联网安防监控,一般是用两副本或单副本群集扛性能,为回收间要浪费50%间,也有公司在开发快删专用的环形存储结构。如果数据进了纠删码才被删掉,比如说走了个PB级相册客户,那浪费磁盘间的损失可能要持续半年以上。
d****g 2020-08-31
【FAQ】常见问题梳理,不定期更新,详情请戳此贴~
两个问题,第一,导致手机发热严重(大概十几分后严重发热,可以用烫来形容,严重时导致手机自动关机),第二,总是提示GPS信弱(纯手机导航不存在此问题,不知道链接车机是不是影响GPS信
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
前言 云计算是一种不仅要一次性验收其能力,还要持续关注其品质。客户用IaaS云就跟用IDC一样,用谁家的云就知道谁家有故障,用一家就知道一家的短处才是正常,只有前一个厂商烂到无可救药,客户才对新厂商充满认可和感激。 本文的目的就是归类IaaS云故障的表层现象和深层原因,客户知道云的短板才好做系统设计,云厂商出故障也要老实认错,别总把客户当外行来糊弄。 至于PaaS云和IaaS云的设计实现思路完不同,不在本文讨论范围内。 客户的感知和建议 IaaS云的核心资源是云主机,其他IaaS资源都是依附于云主机的;云主机的可靠性略高于物理机,但并不是云主机永不宕机。 只要云主机采购量稍上规模,云主机用户总遇到一些故障。请谅解和忘记供应商的营销话述,云主机用户必须自己在架构设计层面规避这些故障。 网络抖动 现在云平台已经都用SDN组网,SDN本质是“软件定义网络”,其主打卖点是灵活管理和控制,其性能和稳定性并不是主打方向,SDN软件的质量也要略差与于传统厂商。云平台都有网络IO超卖复用,而且用器CPU软解海量报文,其性能还是比传统网络略差的。
M****点 2018-07-10
中国云计算现状——产品篇
最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没大规模对象存储搭建能力,而且对象存储对应用程序友好上手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了上TB的数据,大数据和AI分析应用自然就部署上来了。广域网传输稳定性不够成本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展间。 大数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,大数据PaaS都用成IaaS定制模板虚拟机了。
p****d 2018-07-11
单机房故障自愈--运维的春天
容量保护模式:针对固定比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充,容量充则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量保护的情况下进行尽可能的调度,减少对用户的影响。 2.即使按照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安水位线:流量处于在安线以下则风险较,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率导致容量过载。 如果安水位线提供的容量不以满止损,那我们期望使用上两条中间的容量buffer,同时流量调度过程中进行分步试探,避免一次性调度压垮。 基于快速熔断的过载保护 在流量调度时,建立快速的熔断机制作为防止过载的最后屏障。一旦出现过载风险,则快速停止流量调度,降低次生故障发生的概率。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为上层托管平台的底层工具链,为PaaS平台提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线上故障; 业的多地域部署; 多种网络环境及大包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合上面场景,向大家介绍百度持续部署是如何实现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行实际任。涉及大包及不同网络环境的部署进行中转下载。 解决方案 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一既灵活又完整的包规范。
TOP