关于 罗江县找个小姐过夜服务一条龙〖8843O306VX〗服务真实康 的搜索结果,共1792
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示例集合,般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景:我是名OP工程师,负责几十系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那么多部署信息,怎么办? 场景二:我是名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容怎么通知给下游模块? 场景三:我的部署例有出现故障了,我想对下游屏蔽该故障例,怎么办? 下面以简单的例子来说明,假设模块名是Server,它的上游是Proxy,下游是Redis,当出现变更或者故障时,如何让上游感知到呢? 当新增上线例、下线摘除例或者例发生故障时,BNS系统通部署在机器上的客户端时感知到例的状态变化,同时新增和删除例的变更情况会立即同步到分布式的缓存系统中,这样用户通BNS名字就可以感知到下游的例变化。
w****0 2018-07-11
单机房故障自愈-黎明之战
单机房容灾能力--盲测验收 完成以上四点单机房容灾能力建设后,业线就具备了通流量调度进行止损单机房故障的基本件。那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
这次验好玩的地方在于: 我定35分的任计划,结果ntpd将时间跃变越了第35分直接到了37分,但该任计划仍然执行了。而从执行输出结果是37分来看,这不是步快跑的踩35分,而是第35分被越了不存在。 这验里坑很多,人要和时间赛跑才能完成验,我做了8次验成功了3次,每次都等了10分钟以上。这验也不够严谨,我只是拿crond做验,我在梦里记得其他有历史守规矩的程序也能和ntpd联动,但我没时间做验了,也希望有朋友能帮我答疑解惑。 附录2:网上能写NTPD和ntpdate的水文和本文内容有些类似,那是我多年以前写的,不是借鉴和抄袭,严肃脸。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景下,运维人员通常选择7*24时值班,接收大量的报警,随时准备在紧急情况下进行响应、决策、操作系列故障止损动作,尽量挽回损失,降低故障影响。 但上述解决方案会面临如下问题: 响应可能不够迅速:例如间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景下,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理程,并及时向运维人员同步故障处理状态。运维人员的职责由处理转向管理,最终运维人员在低压力值班中保证稳定运行。
疏****月 2018-07-09
键上线Archer | 百度持续部署的瑞士军刀
干货概览 业部署(熟称上线)是运维领域最常见的业类型,主要涉及线上代码变更、配置文件变更(数据变更由于其高频、大量的特点,我们已在数据传输文章《嗖的下,让数据自动生效》中专门讨论)。般的业上线具有不定时操作、业部署情况复杂、单机启停策略复杂等特点。在手工运维时代,运维人员需要花费大量精力进行此类重复性工作,且易于出错。从公布的数据显示,Google 70%的生产事故由上线变更触发,如何减少变更程中人为误操作,提供灵活、稳定的部署系统是运维平台研发人员所亟需解决的问题。 基本介绍 在运维自动化的大潮下,百度运维管理平台Noah发布了键上线部署系统——Archer。Archer致力于提供套产品线全程的可迁移发布解决方案,键完成机器初始化、部署、添加模块监控、添加CT任、动态数据文件的分发等全程的自动操作。在操作方面,Archer提供了命令行工具作为发起次上线的操作入口,这种设计模式也决定了其易于集成的特点。在DevOps流水线作业中,Archer可以作为环节结合进整测试发布流水线中。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部门(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本上升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这地基打好后,我们再来回顾下上面的例子。这例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加些指标采集任,并在件达成时报警。管理通对资源合理的组织,极大的简化了运维操作,提升了运维效率。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动
首先被读取到的是/etc/fstab,各磁盘都挂载就位。这文件注释很简单但水很深,我们该用标签还是UUID来标识磁盘,文件系统自检功能要不要开,这都可以聊好几时。 看看各的启动优先级也是讲究多多的程,iptables会比network先启动这类依存关系很好理解;但我也遇到云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以上内容只能算精简科普版的Linux系统启动程,正式版的启动程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都上云了,它们就只是闲聊的谈资了。但客户上云就能少招研究这事的工程师,上云确也很有意义啊。 静人稀,沙子关好了门,气把六十四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野店荒林的威风。叹口气,用手指慢慢摸着凉滑的枪身,又微微笑,“不传!不传!”----老舍《断魂枪》
M****点 2018-07-10
中国云计算现状——产品篇
当客户的非CDN云资源采购金额500万以后,其子项目之间没有内网互通的需求,这时候该做跨厂商的云端资源管理方案了。现在虚拟机不能像CDN样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平台从计费和权限层面做好,至少在项目级别可以和多厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和可以让公司增加企业的融资概念和收入构成。中型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴上说不要眼神也很诚。但具体参与程中,这类工作很少有成功案例,我做成功这类项目感慨也很深,本段落重点解释这些现象并给出建议。 先说IT咨询,去云计算平台吸引到的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为千元的咨询付费。现在高净值客户放出来的云计算咨询标了却没人投标,因为型云计算企业因为资质、高层合作、客户关系等原因没有投标的机会。 我们经常遇到咨询标,但我们也不想投这标。
布****五 2018-07-10
如何执行命令
部署升级 DevOps的概念如今日趋流行,部署升级越发成为开发运维程中重要的环,频繁的交互意味着频繁的部署。部署程可以拆解为两的步骤,是新软件包的上传,二是进程的重新启动。进程的重新启动不必多说,软件包的上传可能有多种方式,如sftp的集中式,p2p的点对点式等。 监控采集 软件运维程需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策程更是需要采集大量的时信息(前期文章《百度大规模时序数据存储》中介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,种是通软件提供的接口直接读取状态数据,另种是通日志/进程状态/系统状态等(如使用grep提取日志,通ps查询进程状态,通df查询磁盘使用等)方式间接查询。 无论是配置管理、部署变更还是监控采集,都有共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量器上执行命令并收集结果”这基础能力,这也是今天我们的主题“如何执行命令”的意义所在。
s****d 2018-07-11
亿元级云用户分析
3.3数据存储池 数据存储池是很难年均摊营收上亿的,但定1000万的目标是能现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损上千万。云厂商提供四类人力资源: 第类是方案咨询和项目规划,不要被免费通用售前蒙蔽了视野,出彩的规划咨询重度依赖精英人力,既要是云产品专家又要是客户侧IT高手; 第二是平台侧研发运维,即使最标准的CDN也要定制日志接口、微调卡顿和回源比,销售铁三角必须最顺畅沟通最高优先级; 第三是项目侧施人力,云厂商可以做盖机房到App适配的所有工作,客户只想对接总包责任人; 第四是客户挖不来留不住“云厂商母公司的顶级技术高手”,他们想借云项目让高手做人力输出,但是……。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得匹。
小****园 2018-07-10
让PB级云存储不再神秘
3、大型用户谨慎选型 大型用户即使只存储1PB,每年也要花100多万了;中型客户只要做选型,而大项目不仅要选型和定制,还有更多技术以外的东西要考量。 首先同样说价格问题,大型客户比中客户更难办,客户是嫌价格贵,大客户却怕低价砸场。云存储不能违背商业的本质,甲方没蠢到敢让乙方赔钱做,但采购决策层更喜欢看谁的报价最低。数十PB的数据上云后基本下不来,平台方无论是提价还是降速,有的是追加预算的手段;如果对方是赔本卖吆喝,成功了就会甩开这包袱,失败了就直接倒闭。我谈PB级存储项目时,我很愿意分享不同底层技术带来的际成本构成,为什么同样的价格我们还能挣钱而友商已经在贴钱,相关内容会在第四章节详细说明。 成功案例是很重要的决策依据,但这依据很难考证性。厂商做PB级项目但其群TB项目做的计费融合,厂商确数百P的项目却和标准对象存储功能不通用,这类事情太多了,对象存储合同上不会有总容量,发票存根也只是简单的信息费。客户的成功案例必须是单命名空间容量达到PB级别,并简要说明文件数量和主要读写场景。
若****客 2018-07-10
IT架构的本质--我的五点感悟
数据生命周期内,为了防止数据全部或部分凭空消失,数据的容错校验、关联复原、冷热备份和安全删除都要考虑到位。 在生僻业的规划程中,没人告诉我们该有哪些,我们只能靠摸透访问逻辑图和数据生命周期,来摸索群集内有哪些角色和依赖关系。 架构师的核心技能包括画好访问逻辑和数据流量图,因为问题现状描述清楚了,问题就解决了多半了。好的业访问逻辑图,不仅仅是几圈圈几线连起来,其信息量大到包访问程的所有元素,也要详略得当高亮关键点。 5. 各环节都不可盲信 容灾设计中都尽人事和听天命 整IT系统中就没有可靠的组件,架构师既不能盲目信任撞大运,又不能无限冗余吓唬自己,而是在尽人事和听天命之间做好权衡。比如TCP就是要建立可靠链接,而现在做性能优化的时候,大家又嫌TCP太笨重了。 业应用不可靠,如果该应用能快速重建也不阻塞其他应用,月级偶发的内存泄漏和意外崩溃都是可以接受的。 支撑性不可靠,对于大部分业,预估年都不丢次数据,SLA能到99.95%就可以了。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
对于落是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的际损失更,甲方无法触及云厂商能倒腾出故障的部门。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业信誉。商誉分为企业商誉和人商誉,云厂商的企业商誉都积淀不足,胜者也是比烂大赛中靠友商更烂胜出的,和IDC/CDN的比优大赛无法相提并论。大客户在吃够了厂商的亏以后,会选择信任能有人商誉,能做出承诺、调动资源和平复问题的销售和人员。 有客户非常信任某云销售,他告诉该销售,虽然某大云有高层合作,某大云也说报价肯定比某云低5%;但是某大云的机制有问题,出故障从来都是衙门话,每次故障都要客户去乱猜和背锅。最终这单子在客户执行层的暗助之下,该云快速把业来并坐站住了,这份暗中相助就是靠人商誉带来的信任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。
追****圣 2018-07-11
给书记省长讲清楚云计算
云计算是商业,不仅需要硬性支持,还需要足够的环境和政策支持。当前云计算公司聚集在线大城市,环境规范稳定但成本极高竞争压力极大,云计算企业也在尝试向二三线转移突围。二三线城市不仅要积极准备云计算硬性资源,还可以用合作融资、税收优惠等等灵活政策承担产能转移的,最终说云计算公司将GDP和税收留在当地。 云计算平台提供的都是互联网,大量的互联网部署在本地会有极大的管控压力。二三线城市对互联网还只是简单的管控,稍有不解可能就会封禁大批互联网,但道封网命令就可以毁掉云计算公司的声誉。如果当地政企要做好云计算就要从管理者变为者,必须在管控违规违法时不惊扰正常业,甚至主动出击为正常网络保驾护航。 前几都是从降低成本可靠的角度请云计算企业来合作建厂,如果你有市场有客户那对方会主动上门寻求合作。从长周期来看云计算的客户是覆盖全球全行业的,各地内部采购的计算机项目根本不值提,市场和客户要靠云计算厂商自己去。但现在云计算厂商还在早期扩张摸索之中,云厂商极端渴求各种政云企业云成功模式案例,旦摸出来案例会迅速推广到全国。
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维职位展望
生产领域的公司因为运维涉及到在在的钱,所以运维人员待遇高(都是专有技术难培养)、做的事情少(自发做事多了会出错,不如厂商技术支持),只是跳槽的难度比通用运维要大些(都是专有技术不通用) 4、彻底转型,做和计算机无关的工作;选这路的人部分是自己有大觉悟或巧机缘,但另部分人是的适应不了环境变化,希望各位不要被淘汰掉。 最后总结下,云计算是不可阻挡的历史趋势,它还给了运维五到十年的时间去修正自己的职场规划,我们可以顺势而为也可以激流勇进,但不可得随波逐流最终。 天行健,君子自强不息。
M****H 2018-07-11
故障定位场景下的数据可视化
基于上面的需求,可以总结为以下三定位的层次,从整体到局部逐步缩故障范围,到故障根因: 全局问题定位:快速确认线上状态,缩故障判定范围。为可能的止损操作提供判断依据。本文会介绍如何构建全景分析仪表盘。 细分维度定位:通分析地域、机房、模块、接口、错误码等细分维度,进步缩问题范围,确定需要排障的目标模块、接口等。本文会介绍如何基于多维度数据可视化解决维度数量暴增带来的定位难题。 故障根因确认:些情况下,问题的根因需要借助除监控指标之外的数据进行分析。例如上线变更、运营活动导致的故障。本文针对导致故障占比最高的变更上线类故障进行分析,看如何快速到可能导致故障的变更事件。 全景掌控缩范围 对于乃至产品线而言,拥有布局合理、信息丰富的全景监控仪表盘(Dashboard)对于状态全景掌控至关重要,因此在百度智能监控平台中,我们提供了款可定制化的、组件丰富的仪表盘。 用户可以根据的特征,自由灵活的组织仪表盘布局,配置所需要展示的数据信息。
TOP