关于 荣昌县怎么找到附近服务〖8843O306VX〗服务真实亚疾灿赂纲 的搜索结果,共1113
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示一个例集合,一般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯一的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景一:我是一名OP工程师,负责几十个系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那多部署信息,办? 场景二:我是一名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容通知给下游模块? 场景三:我的部署例有一个出现故障了,我想对下游屏蔽该故障例,办? 下面以一个简单的例子来说明,假设一个模块名是Server,它的上游是Proxy,下游是Redis,当出现变更或者故障时,如何让上游感知呢? 当新增上线例、下线摘除例或者例发生故障时,BNS系统通过部署在机器上的客户端时感知例的状态变化,同时新增和删除例的变更情况会立即同步分布式的缓存系统中,这样用户通过一个BNS名字就可以感知下游的例变化。
w****0 2018-07-11
单机房故障自愈-黎明之战
如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损流程 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
录2:网上能一个写NTPD和ntpdate的水文和本文内容有些类似,那个是我多年以前写的,不是借鉴和抄袭,严肃脸。
流****水 2018-07-11
度云企业级运维平台——NoahEE
我们推出的NoahEE(Noah Enterprise Edition)脱始于Noah,为企业提供了一站式运维解决方案,覆盖了包括日常的故障管理和变更管理中典型的运维场景,致力于为政企、金融、教育等行业提供业可用性保障、提升运维效率。 图1 NoahEE概览 接下来,我们把这艘诺方舟分解开来,距离观察一下这艘船的方方面面。 管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台上各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几台甚至一台机器上,进行变更等运维操作简单直接,登录机器上人工操作就好了。随着业的发展,分布式应用与的广泛使用,我们越来越多的面临着运维场景与运维执行之间的脱节。 举个例子,今天17:00开始对X机房的地图导航模块进行升级。对于产品研发的同学来说,关注点是语义明确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在哪里。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭州电信接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
M****点 2018-07-10
中国云计算现状——产品篇
肯定有读者怪我认识浅薄,但是云内资源调度都做不好的用户,能做好跨云的资源调度。 既然谈了混合云,肯定就要谈云管平台,云管平台不是伪需求而是新需求。当客户的非CDN云资源采购金额过500万以后,其子项目之间没有内网互通的需求,这时候该做一个跨厂商的云端资源管理方案了。现在虚拟机不能像CDN一样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平台从计费和权限层面做好,至少在项目级别可以和多个厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和可以让公司增加企业的融资概念和收入构成。中小型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴上说不要眼神也很诚。但具体参与过程中,这类工作很少有成功案例,我做成功过这类项目感慨也很深,本段落重点解释这些现象并给出建议。 先说IT咨询,过去云计算平台吸引的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为一小时一千元的咨询付费。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
s****d 2018-07-11
亿元级云用户分析
3.1 IaaS计算池 IaaS计算池,交付给客户的是CPU+内存+本地盘+本地网+IDC电力,产品形式可以是虚拟机、裸金属、容器,或者预装了数据库-大数据-队列等的模板化云主机,决定资源池成本的是硬件和电力的价格,以及内部浪费程度。销售铁三角对硬件资源池的包装,完成资源成本分析、交付展示和付款周期核算;在硬件资源池交付时,云厂商的优势长处是大规模交付和成本控制,至于短处——家家有本难念的经。 3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢手里;而盯客户的套路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收上亿的,但定个1000万的小目标是能现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
后面任下发至具体机器,具体机器再从中转机拉取需要被部署的文件;中转机也为跨网络环境的部署提供了可能,隔离网段中的机器无法访问内网机器,通过中转的“搭桥”完成了跨网段的数据传输; 提高自动化效率,能够集成测试发布自动化流水线 自动化效率方面,Archer提供了命令行工具,可接入各种脚本、平台。另外,Archer也可定制化单机流程:针对不同的业场景,Archer提供了名为“operation_list” 的配置文件,采用YAML语法。单机执行流程步骤被定制化成固定几个种类。用户通过简单的配置,即可现“启停监控”、“启停”、“数据传输”、“执行某些命令或脚本”、“启停定时任”等上线过程中的常见操作的自由组织及编排。这种形式大大扩展了Archer的适用范围。在了解Archer使用方法的情况下,OP几分钟内即可配置出适用于数十条不同产品的上线方案。 其他设计点 每次的部署流程通过web总控端的参数解析后,就被作为任下发每台被部署的目标机器。当部署任从总控端发被部署机器上时,任的具体执行依赖agent及一系列脚本。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
前言 云计算是一种不仅要一次性验收其能力,还要持续关注其品质。客户用IaaS云就跟用IDC一样,用谁家的云就知道谁家有故障,用一家就知道一家的短处才是正常,只有前一个厂商烂无可救药,客户才会对新厂商充满认可和感激。 本文的目的就是归类IaaS云故障的表层现象和深层原因,客户知道云的短板才好做系统设计,云厂商出故障也要老认错,别总把客户当外行来糊弄。 至于PaaS云和IaaS云的设计现思路完全不同,不在本文讨论范围内。 客户的感知和建议 IaaS云的核心资源是云主机,其他IaaS资源都是依于云主机的;云主机的可靠性略高于物理机,但并不是云主机永不宕机。 只要云主机采购量稍微上规模,云主机用户总会遇一些故障。请谅解和忘记供应商的营销话述,云主机用户必须自己在架构设计层面规避这些故障。 网络抖动 现在云平台已经都用SDN组网,SDN本质是“软件定义网络”,其主打卖点是灵活管理和控制,其性能和稳定性并不是主打方向,SDN软件的质量也要略差与于传统厂商。云平台都会有网络IO超卖复用,而且用器CPU软解海量报文,其性能还是比传统网络略差的。
追****圣 2018-07-11
给书记省长讲清楚云计算
这类厂商在国内发展都不太顺,和他们沟通主要看他们有什合作诚意,是否穷极思变。 最后一类是系统集成企业,这类厂商已经地方政企几十年了。他们最大的优点和缺点都是为政府和国企为生,他们可以买技术搭建出云平台,但他们建好云平台的目的是再卖给本地政府和国企。这类企业需要完成从供应商合作方的转变。 云计算不是万能药,它无法解决哪些问题。 在地方政企看来,云计算只是一种商业形式,不能对它报以不切际的期望值。 云计算行业不需要大量雇佣本地劳动力,无法解决大批就业问题;云计算核心员工会呆在一线城市远程操控,很难将云计算人才引进当地。 云计算不会产生污染,所以不用考虑环保减排问题,但其带来的环保节能问题很严重,每个数据中心都会占用大量电力。 对于四线城市政府和中小型国企,因为现困难资源有限是搞不了云计算的;二三线城市和大型国企才能提供云计算公司感兴趣的资源。
布****五 2018-07-10
如何执行一条命令
为了做执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。 图2简单问题放大后也变得困难 百度目前拥有分布在世界各地的几十万台器,并且随着业的不断扩张,这个数字还在持续增长,构建一个高效稳定通用可扩展的命令描述、传递、执行系统在这样的环境中有着重要的现意义。对百度各产品线的用户来说,这样的一个系统,最基础的要求是:执行高效,控制灵活,扩展方便。 1.执行高效: 单机执行,要求能够达秒级命令下发/执行/结果收集。 集群执行,要求支持同时在10万台器上并行执行,同时保证集群中每个机器达单机执行的性能。
双****4 2018-07-11
【杂谈】猎场没那精彩--还原的猎头
现在有跳槽意向的普通员工会在招聘网站更新简历,中高层会主动布局等待候选单位上钩,专门单一猎头更新简历库的互联网人才越来越少了。 在甲方来看,个猎头公司签个合作协议是很随意的,这些猎头谁做成单了才给钱,做不成也没损失,甲方还能享受一呼百应蜂拥而上的快感。但天下没有免费午餐,免费供应的简历质量无法保障,耽误的人力和时间都无法衡量。滥用猎头还会增大不必要支出,中下级岗位人事自己也能搜简历,而很多初级猎头就做佣金几千块的小单子。 如果甲方要精英猎头,先要确认该岗位是否值得去专业人才;当甲方觉得能付出十万块钱的佣金是值得的,好甲方就能好供应商;如果招聘方把几千块佣金当做传家宝贝,给猎头花这个钱还不如给面试者报销打车费。 第三部分.影视剧中对猎头的梦之误解 编剧们写的“白领剧”是给观众展示一场“高端职场环境”的梦,“白领梦”并不比“皇帝梦”“武侠梦”更,因为这个“高端职场环境”从来就没存在过。我看那些影视剧中对猎头的刻画过于夸张,按照那种方法做猎头就别想挣钱了。
小****园 2018-07-10
让PB级云存储不再神秘
数据去重问题 对象存储不做数据去重功能,看着简单的功能背后都有蛛网一样的复杂考量,元数据、计费、存储、增数据逻辑、删数据逻辑、回收空间逻辑、用户资源隔离逻辑都会因为这个很炫的功能被彻底改变。正要去重的文件就是那些电影,随着版权保护的加深,电影只存原片盗版减少会是趋势,其他文件即使做切片去重,命中率也非常低。我们提供hash值让客户判断该不该删文件,该不该做文件映射就够了。 长周期软硬件换代 对象存储是付费企业级,并不是终身免费但匆匆关张的个人网盘。我们必须考虑十年为刻度的长周期维护问题,某种硬件停产了办,假设系统内核停止维护办?我强烈反对极端优化单点性能,就是因为单点性能极限优化必然和硬件、内核、文件系统都有深度关联。我推荐存储主力是应用层用户态进程,老中青三代器和谐运行,群集性能瓶颈本来就不在单点,不要给自己的软件无故设限。 冷存储问题 冷存储分冷和低温两种类型,冷存储就是用磁带、蓝光盘、可离线存储节点来存储数据,这样可以节省机柜电量,但这是个工程学问题不是计算机问题了。
TOP