关于 营山县哪里酒店宾馆小姐服务〖8843O306VX〗服务真实兔霉 的搜索结果,共959
h****e 2018-07-10
程序:我从来?
干货概览 在计算机程序或者的层次上,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,包含了例,规模、部署情况、例运行状况如何? 2.我从来? 的上游有些,不同的上游流量如何分配? 3.我往去? 的下游有些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息包括:在机器上部署信息(机器IP,部署路径,配置,端口信息),例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
w****0 2018-07-11
单机房故障自愈-黎明之战
那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损流程 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
后来我和于老板深究原因,不可能几个朋友都骗我或者都蠢,很可能前些年光纤波分机自己只能甩出10G口,或运商租光纤套餐只有10G规格,给大家造成了裸光纤只能跑10G带宽的印象。同样固有的印象是光纤必须从运商那租,而且价格很贵还必须买波分设备等等;其现在企业专线的市场竞争很充分,拉同城裸纤一公也就几百块钱,而且短距离裸纤也不值得上波分设备,直接对接模块即可。 二、NTD是试金石 我对裸光纤是门外汉,但同样的技术误解让我想到了NTP,我一直拿ntpd和ntpdate当做初中级系统工程师的试金石,分不清就月薪五千,分得清就八千以上(2014年市价)。但很多货的IT专家也在此事上跌倒,我也希望通过聊清楚一层误会,说明高级工程师该少迷信多思考。 NTP是网络时间协议,它是多项传输、计算、加密技术的核心参数。 假设我认为TCP连接超时断开链接了,你怎么给我传输数据; 玩各种定时给奖励收益的花园经类游戏,我经常通过修改时间快速刷分; 你的系统时间不对网银都会拒绝登陆,因为加密程序算不出双方认可的Token。
s****d 2018-07-11
亿元级云用户分析
咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是保护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。 资源持续--亿元大客户不要求云平台永不故障,但要云平台承诺清晰SLA,事后给个合理的故障报告。 后记 如我在《复制阿云并不难》中所说的,一个云行业半个IT界”,云行业将垄断IT界一半的收和利润。本文讨论的亿元大项目,目标就是拿下IT圈的收上限。现在亿元大单都是云厂商在侵入系统集成商的势力范围,后面云厂商会得到越来越多的亿元大单。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,按用量付费可能会比按资源付费更便宜(也可能更贵),而PaaS平台的恼人和诱人之处均在于产品形态很模糊、质量很难评估、很难独立运、没有领头羊企业和事标准。 PaaS云平台和IaaS云资源的区别就在于,平台需要理解客户的动作和状态。对象存储和CDN就是最典型的PaaS,云平台按照数据容量、访问流量、访问次数和方法收费;Mysql RDS只能按照内存和日志空间上限计费,但仍然可以替客户做数据库状态展示、分析和备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安全性,而且企业仍然需要DBA承担设计维护工作。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
追****圣 2018-07-11
给书记省长讲清楚云计算
当云厂商看到商机肯合作时,我们要掌握各类云厂商的特点才能心有数。 第一类是大型云厂商,他们自身有很强的资源整合能力和执行销售能力。地方政企和这类企业合作的话语权很弱,但极风险就能看到收益。 第二类是创业云厂商,他们一般是靠技术优势和态度从大型云企手抢单子。地方政企和这类企业合作时有很强的议价能力,注意不要盲目倾向技术优先的创业云厂商,而是选择态度和执行能力好的创业云厂商。地方政企很难确切搞懂厂商的技术有些优势,而项目的推进落地都是要靠云厂商来执行的。 第三类是外企云厂商,这类厂商是被广阔的中国市场吸引过来的,也有兼顾外企中国分部的客户。这类厂商在国内发展都不太顺,和他们沟通主要看他们有什么合作诚意,是否穷极思变。 最后一类是系统集成企业,这类厂商已经地方政企几十年了。他们最大的优点和缺点都是为政府和国企为生,他们可以买技术搭建出云平台,但他们建好云平台的目的是再卖给本地政府和国企。这类企业需要完成从供应商到合作方的转变。 云计算不是万能药,它无法解决些问题。 在地方政企看来,云计算只是一种商业形式,不能对它报以不切际的期望值。
流****水 2018-07-11
度云企业级运维平台——NoahEE
对于产品研发的同学来说,关注点是语义明确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在。在业规模发展到一定程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部门(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本上升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与定位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下上面的例子。这个例子中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来定位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一定条件达成时报警。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
但客户自己心要有秆秤,厂商究竟是偶尔发挥失常还是烂泥扶不上墙,故障的性质对长久的品质很重要。 我列一下潜在的故障原因,些故障能忍,些故障不能忍,这些要云客户自己评估了。 技术原因 IaaS的核心主体功能(云主机、云硬盘、VPC),在没有特型要求前提下,是可以用开源方案搭建。如果是云厂商连个开源平台标准模块都部署失败,那就该换厂商了;如果是偶发的BUG,那确客户要自认倒,因为友商也会遇到同样问题。 现在容易出问题的是云平台的运维护和云厂商的自定义管理模块,客户就是缺合格运维才被逼上的云平台,但云厂商自己也缺人;在软件BUG这一部分我已经吐槽过做云平台外延模块程序员的技能水平了。这些地方出了问题该投诉投诉、该索赔索赔,逼着客户去招更敬业专业的工程师。 资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不足,但面对大客户时会很坦诚。 作为持久共生的大甲方,请关注乙方的成本红线,买家永远没有卖家精。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为上层托管平台的底层工具链,为PaaS平台提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线上故障; 业的多地域部署; 多种网络环境及大包部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合上面场景,向大家介绍百度持续部署是如何现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行际任。涉及大包及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的包规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置文件的目录结构,Archer规定了一套既灵活又完整的包规范。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
但客户上云就能少招一个研究这事的工程师,上云确也很有意义啊。 夜静人稀,沙子龙关好了门,一气把六十四枪刺下来;而后,拄着枪,望着天上的群星,想起当年在野荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
若****客 2018-07-10
IT架构的本质--我的五点感悟
2.群集设计通用规则 前端复制后端拆,时改异步,三组件互换 前端复制后端拆,时改异步,IO-算力-空间可互换——要做架构就要上群集,而群集设计调优翻来覆去就是这三板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做水平复制扩容,在网站类应用上,无状态-会话保持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散微操作就越爽,但全局操作开销更大更难控制。 时改异步是我学的最后一门IT技术,绝大部分“时操作”都不是业需求,而是某应用无法看到后端和Peer状态,默认就要时处理结果了。CS模式的时操作会给支撑带来巨大压力,Peer合作的时操作可能会让数据申请方等一宿。架构师将一个无脑大事拆分成多个,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的需要更高业层级上做全局事保障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
个人产品经理是一个需要梦想和热情的职业,但在政企和工业级IT领域,能力比梦想更重要。 本文是想说清楚,政企和工业级软件领域,能力比梦想更重要,个人产品经理来到这个行业就会被秒成渣。如果一个企业要招产品经理,要知道这个行业有些难点痛点,需要什么样的产品经理(其是软件和设计师)。 1. 需求拆解的能力 个人产品经理在设计一款APP时,是可以用生理上的主观感受给产品打分的。但是让一个产品经理来设计个流水线自控系统,他的主观感受并不重要,必须用技术和业能力将客户需求描述和引导。某些产品经理因为自己毫无感受憋不出词来,就把客户的要求当做圣旨跪拜,这不仅是吃扒外,还是会搅黄项目的搅屎棍。 要拆解客户的需求,必须技术上能跟客户做平等对话,业上了解客户工作流程,还要理解大型客户内部的利害关系,不能靠“视察”客户会议室装专家上,也不能像外行一样凡事都跪问客户。 我举第一个例子是很多系统都有监控,监控系统的产品经理要完成下列工作才合格: 技术:产品经理对“check tcp 80”和“check http 200”这类业术语没概念,需要客户被坑一次骂一次才能改一点点。
小****园 2018-07-10
让PB级云存储不再神秘
云计算是企业,云平台是我们的供应商不是我们的管理者。TB级用户正是业高速发展的关键时刻,我们更要防备某些吃相难看的混蛋。 云存储相对业简单,遇到野蛮运的问题主要集中在窃取数据、估算业量、恶意不兼容其他这三方面。 窃取用户数据指的是监守者自盗后自用,要是泄露给第三方那是安全事故可以直接报警抓人,但平台方自用用户数据很难抓现行。云存储大都是多媒体数据,谁敢盗播打官司就好;日志文件加密了就用不了云端大数据分析了,但不挂个人信息的基因测序样本被偷了也不怕。如果客户的特别害怕丢数据,云平台确没手段能自证清白,谁偷过用户数据只能听业内风闻。 正让用户头疼的是平台方会根据计费日志估算你的业规模,就像区保安总共能看到你何时出门一样。据不可靠传闻,某厂商本来能拿到某云厂商母公司数亿美元投资,自吹数据量有数PB,该司投资部去调了一下他们的消费金额就取消投资了。单一个消费总金额就这么麻烦,访问日志可以看文件数量、用户规模分布和大致的动作类型,一个新兴企业最好还是把业分散在两个厂商那,毕竟他们两家不能核对你的账单。
TOP