关于 西安韦曲找妹子上门按摩保健服务【微85516654】无定金 的搜索结果,共994
h****e 2018-07-10
程序:我从哪里来?
Check Agent:提供BNS实例的康检查功能,用户通过在Web页面对每一个实例配置康检查的方式,机器的Check Agent会主动探测所有实例的运行状况,并将康检查的结果报给Cache层,同时更新数据库内容。 总结 BNS系统满足间交互中常见的的资源位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从哪里来?该往哪里去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎大家积极留言。
s****d 2018-07-11
亿元级云用户分析
限制客户梦想的是老旧系统是否支持常见协议,还有底层工程师能否推动层业测试和变动。 API调用PaaS——API云就是不可控过程的黑箱,客户没预算没精力就盲目信任云厂商。客户有精力就做多云冗余校验,有预算就做专有资源池部署;未来云厂商还会自义SLA标准——大部分API云连等待超时都没义。 版本发布和数字化转型——论是观的版本发布还是宏观的数字化转型,其实都和云没直接联系,一个是室内装修工作,一个是新建房屋工作,但装修的最好时机是房屋重建的时候,云厂商要帮客户推动IT技术革新。 5.输出分析 云厂商输出给客户的即有云端IT资源,也有平台输出。是个比资源更难量化的概念,我只引一把火苗出来。 咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的实施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大主,云厂商的下限是类比传统IDC,要把主伺候舒了就要学IOE类集成商。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固的标准并且支持制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线故障 针对分级发布的使用场景,Archer支持串并行线及暂停点功能,可照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特地域(机房)中生成特配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的线在发起任后,部分代码将首先被转存至中转机
s****7 2018-07-10
知著看技术误解——从裸光纤和NTPD谈起
我们很难成功调试NTPD,会装NTPD又没有会装LAMP可以拿去吹牛,时间长了NTPD就背黑锅了。 真有TOP10的互联网公司和亿国家级项目里用ntpdate+crond,一代架构师为什么有这个误会人深究,下一代人将误会固化为偏见,新一代人将偏见神化为迷信。 但论误会、偏见还是迷信,时间跃变、回退和停滞对应用壮性和业全性的威胁始终存在,时间不仅仅是我玩游戏时用的魔法,忽视问题并不能掩埋问题。 六、见知著和防杜渐 我讲NTPD和裸纤并不是为卖弄知识,也不是为做偏科普,而是希望进阶工程师们多考虑一下如何规避这类误会?我们在做技术工作时,是不是只关注客户和同事能提出的需求?客户永远不知道裸纤的物理特性,同事也不会知道时间也能错误和波动,他们能说清楚业逻辑就不错了。 把所有的精力都用到做业逻辑,你只是个编程语言翻译机而已;自己主动观测技术环境依赖,有资格有能力做出技术选型决策,才是给Coder群集做技术校准的人。即使你不想做技术决策人和管理者,多怀疑和观察环境,也能少些沟通成本,少走一些冤枉路,多一份自信和自尊。
1****2 2018-07-09
百度全:AI 是系统工程 需要真正开放的全护航
百度全最近发 布了OpenRASP 开源自适应全解决方案,护引擎集成在了应用内部,在应用完成协议解析后,才开始检测攻击。 这与传统的全防护解决方案有什么差别呢?首先,传统防护产品主要依赖请求特 征,OpenRASP 是通过监控应用的执行逻辑和行为来实现防护;其次,OpenRASP 可 以实现应用的热补丁,比如可以永久免疫Struts 系列漏洞;最后,OpenRASP 实现了 编码规范检查、全基线检查,这也是传统防护产品法实现的。OpenRASP 和KARMA 分别在云端和终端两侧为智能终端产品和提供自适应障能力。 未来的AI 攻防:需要真正的生态开放 AI 是一把双刃剑,用在全专家手里,能够更快、更高效地做好防御。将AI 用于 全领域,在感知层可以提升用户体验,认知鉴权由“知”(密码)、“有”(U 盾) 到“是”的转变;在执行层,AI 可以提升全攻防对抗的能力,论是网络空间全 还是业全;在战略层,全专家角色实现由人到机器的转变,AI 自主进行攻防对 抗。而将AI 用在黑客手里,就可能造成“永恒之蓝”那样席卷全球的灾难。
w****0 2018-07-11
单机房故障自愈-黎明之战
同时流量调度也法使得恢复正常。 要求:将拆分为若干不同的逻辑单元,每个逻辑单元处于不同的物理机房,均能提供产品线完整。 3.不满足N+1冗余 描述:任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量。 问题:流量调度导致其余机房过载,造成多个机房故障,造成更大范围的影响。 要求:容量建设需要对于每个逻辑单元都要有明确的容量数据,并具备N+1冗余,即任意机房故障情况下,其余机房均可承载这部分流量,同时需要变化时及时更新数据和扩容,避免容量数据退化。同时对于流量的变化趋势,也需要有提前的预估,为重大事件流量高峰预留足够容量(如节日、运营、假期)。 4.关联强耦合 描述:下游使用固IP或固机器名进行直接连接。 问题:单机房故障发生时,关联的下游之间法进行快速的流量调度止损。 要求:线关联不允许使用固IP或机器名链接,需使用具备流量调度能力的下游连接方式以实现下游依赖解耦,下游发生单机房故障,可以快速调整路由比例实现止损。
金****洲 2018-07-10
混乱的集群遇见TA 从此岁月静好
第二天 工程师们说:“这个系统必须运行稳,性能卓越,支持跨平台(Linux、Windows、ARM)装,要做到同时管理万台器,一点儿都不慌”。 第三天 工程师们说:“这个系统不能像瑞士军刀,而应该重剑锋、大巧不工,仅支持基础设施的维护管理,要能做到快速扩缩容!出现问题能立刻回滚,障云环境的全和稳。” 第四天 工程师们说:“这个系统还要做到‘麻雀虽小,五脏俱全’!要为基础设施提供虚拟化容器隔离,应用部署,应用拓扑搭建和集群控制的功能。为应用的整个生命周期驾护航,提供一条龙。” 总之就是四个字,“轻”、“稳”、“专”、“全”,对于这一切,工程师们很满意。 于是百度云的工程师们结合百度历年来云计算的经验与技术沉淀,潜心打磨,匠心打造,最终强势推出新一代私有云云基础设施管理引擎HALO。 Q:HALO是什么?
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
前言 沙龙的镳局已改成客栈。东方的大梦没法不醒了。----老舍《断魂枪》 云计算大潮到来了,我把IT技术像五虎断魂枪一样收起来了。我不会将它压到箱底,偶尔我也会练练聊聊,纪念一下那个搞技术的黄时代。 本文聊个很有嚼头的技术问题,Linux系统的启动过程,当我们不用自己装系统以后,丧失了这么多乐趣。 正文 1.主板加电和硬件自检,就是开机第一屏启动界面。 CPU和内存插得有问题器会滴滴乱叫,而网卡和硬盘插不插都所谓,因为这些外设都不属于经典的计算机系统。 早期小内存器一般有内存检测的功能,但256G内存的器启动的速度也太慢了,重启一分钟能启动的还能恢复,重启三分钟可能群集性状就变了,所以我们经常顺手就把他关掉了。 2.读取主板引导配置,现在终于要从外部设备读取数据了。 主板大都是BIOS引导,也有是UEFI引导,但从器用户看区别也不大。 主板可选从USB/SATA/NIC这几类接口获取引导数据,而且可以排队式加载,第一个加载不成功就尝试第二个。系统装镜像都有个防止误操作的倒计时,而网络引导一般是排在末位,硬盘引导就是通用的系统启动的方式。
流****水 2018-07-11
度云企业级运维平台——NoahEE
在业规模发展到一程度后,运维工作还停留在早期人工或脚本方式执行的阶段时,这样的差异非常频繁的发生。 在实际的运维中,还有更多的因素需要考虑,例如机器是否会分配给不同部(资源的隔离)?权限又该如何控制?随着规模变大,人力成本等管理成本升,然而效率低下、可用性不升反降等等都是非常可能出现的问题。百度对于这个问题给出的答案是,必须先要解决资源组织管理问题。简单的说,管理要解决的最核心问题就是如何对资源进行有效组织管理与位: 图2 解决规模带来的问题 在管理这个地基打好后,我们再来回顾下面的例。这个例中,地图研发的同学就可以在运维平台中选中导航的模块进行升级,运维平台会通过管理来位此次升级操作需要影响的机器并进行批量的操作。NoahEE中的所有运维系统,都以管理为基础来进行运维操作,例如在监控系统中,我们可以对导航模块(而不是单台机器进行操作)添加一些指标采集任,并在一条件达成时报警。管理通过对资源合理的组织,极大的简化了运维操作,提升了运维效率。
p****d 2018-07-11
单机房故障自愈--运维的春天
比例模式:照预先设的固预案,一个机房故障,该机房的流量照预先设的比例分配到其他的机房。很可能某个机房的容量或剩余机房的总容量不足,切流量后导致多个机房发生故障。 容量护模式:针对固比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充足,容量充足则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量护的情况下进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量法完全可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 全水位线:流量处于在全线以下则风险较小,可以一步进行切换。 水位限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。
若****客 2018-07-10
IT架构的本质--我的五点感悟
2.群集设计通用规则 前端复制后端拆,实时改异步,三组件互换 前端复制后端拆,实时改异步,IO-算力-空间可互换——要做架构就要群集,而群集设计调优翻来覆去就是这三板斧: 前端是管道是逻辑,而后端是状态是数据,所以前端复制后端拆。前端器压力大了就多做水平复制扩容,在网站类应用状态-会话持-弹性伸缩等技术应用纯熟。后端要群集化就是多做业拆分,常见的就是数据库拆库拆表拆键值,拆的越散操作就越爽,但全局操作开销更大更难控制。 实时改异步是我学的最后一IT技术,绝大部分“实时操作”都不是业需求,而是某应用法看到后端和Peer状态,默认就要实时处理结果了。CS模式的实时操作会给支撑带来巨大压力,Peer合作的实时操作可能会让数据申请方等一宿。架构师将一个脑大事拆分成多个小事,这就是异步架构,但拆分事就跟拆分数据表一样,拆散的小事需要更高业层级做全局事障。 在群集性能规划中,网络和硬盘IO+CPU算力+磁盘和内存空间是可以互换的,架构师要完成补不足而损有余的选型。
M****点 2018-07-10
中国云计算现状——产品篇
最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是法长期存储数据的,小量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳性和数据全性,而且企业仍然需要DBA承担设计维护工作。 对象存储是新兴需求,企业里本来就没大规模对象存储搭建能力,而且对象存储对应用程序友好手简单,客户对它是积极拥抱甚至业依赖。一旦用户在对象存储平台堆积了TB的数据,大数据和AI分析应用自然就部署来了。广域网传输稳性不够成本又过高,只能是计算组件跟着存储就近部署,PaaS云创业公司从对象存储入手才更有客户粘性和横向扩展空间。 大数据类PaaS类似于云数据库,用户要自带海量数据过来,Mapreduce过程和结果又都要用户负责,最终客户觉得云平台什么都没做,大数据PaaS都用成IaaS制模板虚拟机了。
追****圣 2018-07-11
给书记省长讲清楚云计算
进入2000年,纸化办公、游戏、社交、电商改变了大众的生活的方式,国内从业人员已经远超百万,技术分类有数十种工程师。 在最近的十年,移动互联网兴起,便捷的通信、打车、外卖、电支付等功能层出不穷,所有面向个人消费者的行业都在加速互联网化;未来十年里,计算机技术将深刻影响工业生产领域。这时问题出现了,我们需要千万名工程师吗,我们有这么多工程师吗? 历史总是惊人相似的轮回,在国家决策层面,云计算是个可以和能源、融相提并论的领域。 第一次工业革命开始时,每一个矿山都装各自的蒸汽机;第二次工业革命开始时,每一个工厂都要重点解决电力等能源问题;信息技术革命开始时每个公司都要有计算机工程师。但百川终到海,发动机能统一标准,电力能源能集中供应,云计算平台可以实现计算机技术的标准化,凭借规模效应降低成本,让客户直接付费购买信息技术,极大减少了客户的人力投入以及衍生的时间和管理成本。 信息技术革命的核心工作是信息的存储和处理,最重要的资源是数据。
TOP