关于 足浴按摩上门包夜十薇v信78792796湖州长兴莞式服务哪里比 的搜索结果,共1132
h****e 2018-07-10
程序:我从来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,含了些实例,规模、部署情况、实例运行状况如何? 2.我从来? 游有些,不同的游流量如何分配? 3.我往去? 的下游有些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维实践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关息 ,这些括:在机器部署息(机器IP,部署路径,配置,端口息),的实例运行状况等其他重要息。简单来讲,它提供了一个名到资源息的一个映射关系。
追****圣 2018-07-11
给书记省讲清楚云计算
本文含如下内容。 从大时代背景来看什么是云计算,云计算为什么会起。 云计算如何带动地方经济,这是个不需要物流就可以全球的行业。 做云计算要满些条件,如何才能筑巢引凤。 挑选合格的云计算合作厂商,每类厂商有些特点。 云计算不是万能药,它无法解决些问题。 什么是云计算 近20年来,互联网引爆了全球的息技术革命,我国借助这次技术革命的大好机会,已经追乃至领跑此次技术革命。 互联网技术深刻的改变着我们的生活,其行业生态也在逐步分化扩大,这一现状客观促进了云计算技术的发展。 世纪80年代,计算机仅应用于科研等少数行业,全国计算机从业人员不超过万人,从业人员大都有很深的学术背景。 世纪90年代,户、论坛、邮件系统开始影响部分群众的生活,国内从业人员约为万人,可以分为软件和硬件两类工程师。 进入2000年,无纸化办公、游戏、社交、电商改变了大众的生活的方,国内从业人员已经远超百万,技术分类有数种工程师。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
NTPD是一个时间同步,ntpdate是个时间同步命令。很多工程师都会采用Crond+ntpdate的方同步时间,究其原因是“NTPD不太好用”。 而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增的向量,即老时间t1肯定小于新时间t2,新时间t2也小于最新的时间t3,而且t1必定会渐进增到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目任,不相t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优势 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序健壮性和业安全性,甚至部分程序崩溃的稀糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。
布****五 2018-07-10
如何执行一条命令
部署过程可以拆解为两个小的步骤,一是新软件传,二是进程的重新启动。进程的重新启动不必多说,软件传可能有多种方,如sftp的集中,p2p的点对点等。 监控采集 软件运维过程需要时刻监控系统及业软件的运行状态,各种运维决策都是以这些数据为依据进行的。随着自动化运维的发展,很多运维动作都从人工执行变为了自动执行,自动执行的决策过程更是需要采集大量的实时息(前期文章《百度大规模时序数据存储》中介绍的TSDB就是为了解决这些数据的存储问题而研发的)。监控数据的来源主要分两种,一种是通过业软件提供的接口直接读取状态数据,另一种是通过日志/进程状态/系统状态等(如使用grep提取日志,通过ps查询进程状态,通过df查询磁盘使用等)方间接查询。 无论是配置管理、部署变更还是监控采集,都有一个共同的目的:控制器。在现阶段,要想对器进行控制,离不开“在大量执行命令并收集结果”这一基础能力,这也是今天我们的主题“如何执行一条命令”的意义所在。
流****水 2018-07-11
度云企业级运维平台——NoahEE
我们推出的NoahEE(Noah Enterprise Edition)脱始于Noah,为企业提供了一站运维解决方案,覆盖了括日常的故障管理和变更管理中典型的运维场景,致力于为政企、金融、教育等行业提供业可用性保障、提升运维效率。 图1 NoahEE概览 接下来,我们把这艘诺亚方舟分解开来,近距离观察一下这艘船的方方面面。 管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几台甚至一台机器,进行变更等运维操作简单直接,登录到机器人工操作就好了。随着业的发展,分布应用与的广泛使用,我们越来越多的面临着运维场景与运维执行之间的脱节。 举个例子,今天17:00开始对X机房的地图导航模块进行升级。对于产品研发的同学来说,关注点是语义明确且更具描述性的“运维场景”;而对于运维人员来说,关注点是此次升级操作所涉及的机器等资源在
s****d 2018-07-11
亿元级云用户分析
1.云目的分析 大型云用户云的宏观目的和普通用户类似,但多角色多部的利益诉求非常复杂。 降低成本:客户最直观的诉求,或者削减IT预算,或者同等预算下支撑更多的;其他客户诉求都难以清晰描述,唯独成本可以看发票和合同。 明确责任:客户不想承担各个IT系统的衔接和选型责任,相软件厂商和系统集成商,云厂商的责任覆盖范围会更广泛一些。 收拢数据:云本身并不碰业数据,但云是很好明确业数据存储位置的机会,云业改造是规范数据结构的理由。 求新图变:企业客户在气势如虹时要居安思危,在困境危难之中穷极思变,IT技术是企业的潜在增点甚至退路。 本文讨论的是有模糊度和利润空间的云计算项目,CDN和IDC资源可以用做计收载体,但不能做为云目的分析。亿元以器、CDN的订单很多但既无技巧也无利润,这些资源厂商也在跟云厂商学习如何装项目。 2.客户角色利益分析 大企业多角色之间的利益诉求不同,所以表现形也不同。我将客户三大角色列出来讨论,销售-售前-项目经理铁三角组合明确客户的诉求,才更好游刃有余的客户。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
例如: 2015年6月某公司云香港IDC节点电力故障崩溃12小时 2016年5月某公司杭接入故障,中断小时级别 2017年1月某业天津机房故障,数小时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。直接损失括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失括用户任度下降、给竞品占领市场机会等。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
对于落实是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是甲方的实际损失更小,甲方无法触及云厂商能倒腾出故障的部。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,期看商业誉。商誉分为企业商誉和个人商誉,云厂商的企业商誉都积淀不,胜者也是烂大赛中靠友商更烂胜出的,和IDC/CDN的优大赛无法相提并论。大客户在吃够了厂商的亏以后,会选择任能有个人商誉,能做出承诺、调动资源和平复问题的销售和人员。 有个客户非常任某个小云销售,他告诉该销售,虽然某大云有高层合作,某大云也说报价肯定某小云低5%;但是某大云的机制有问题,出故障从来都是衙话,每次故障都要客户去乱猜和背锅。最终这个单子在客户执行层的暗助之下,该小云快速把业切过来并坐实站住了,这份暗中相助就是靠个人商誉带来的任。 我和大客户谈故障的时候,喜欢把详细故障原因刨析给客户,企业客户是讲道理的,不要把糊弄ToC用户的手段来对付ToB客户。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固定的标准并且支持定制化,使用Archer进行部署的具有统一的结构; 支持分级发布,及时拦截部署引入的线故障 针对分级发布的使用场景,Archer支持串并行线及暂停点功能,可照单实例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特定地域(机房)中生成特定配置值; 多种网络环境及大部署 针对多种网络环境及大部署的使用场景,Archer提供了部署数据中转传输。采用中转的线在发起任后,部分代码将首先被转存至中转机
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP那获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正版的启动过程可以写万字,有趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招一个研究这事的工程师,云确实也很有意义啊。 静人稀,沙子龙关好了小,一气把六四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
M****点 2018-07-10
中国云计算现状——产品篇
SaaS产品已经出现并流行了几二年了, OA/ERP/CRM/邮箱/模板建站等等SaaS都是各位读者从业年龄还的老古董,最新流行的各种在线办公、协作、通话、众测等SaaS产品也不依赖云器,这些应用云走公网和之前走内网区别并不大,用物理机和虚拟机区别也不大。 狭义的云计算是企业,目标用户的是企业IT技术人员,而SaaS云的目标用户和IT人员只在Helpdesk时有关联。 从这一点来看,这些SaaS只是云平台的普通用户,和游戏、网站、APP、没有区别。只要SaaS云没自建IaaS和PaaS的技术能力和意图,那他们就是客户而非友商。 四、物理机-混合云-云管平台 云主机是物理机的最好替代方案,但也有各种物理机无法被替代的场景需要继续用物理机。 某些云主机的超卖过高,性能太差,又因为各种原因不更换云厂商,那只能基于性能原因用物理机。 某些硬件特性虚拟机还没模拟出来,或者你模拟了我也不如说Oracle RAC就偏爱硬件存储。 某些非TCP/IP资源必须接专用板卡,如说接电话网络的器,接专用器材的器,接加密狗的器。
p****d 2018-07-11
单机房故障自愈--运维的春天
基于内网监控、基础监控、业监控提供的故障号;触发内网止损决策器进行止损决策;执行流量调度、主备切换、弹性降级等止损操作。 单机房故障自愈的常见问题和解决方案 传统的流量调度自动止损方案存在如下问题: 1容量风险控制能力不 【问题描述】 传统流量调度的模有两种:固定例模与容量保护模。 固定例模照预先设定的固定预案,一个机房故障,该机房的流量照预先设定的例分配到其他的机房。很可能某个机房的容量或剩余机房的总容量不,切流量后导致多个机房发生故障。 容量保护模:针对固定例模存在的容量风险问题,改进的流量调度方为执行前判断容量是否充,容量充则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量保护的情况下进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完全可
l****m 2018-07-10
词向量(一)
词向量是自然语言处理中常见的一个操作,是搜索引擎、广告系统、推荐系统等互联网背后常见的基础技术。 在这些互联网,我们经常要较两个词或者两段文本之间的相关性。为了做这样的较,我们往往先要把词表示成计算机适合处理的方。最自然的方恐怕莫过于向量空间模型(vector space model)。 在这种方,每个词被表示成一个实数向量(one-hot vector),其度为字典大小,每个维度对应一个字典的每个词,除了这个词对应维度的值是1,其他元素都是0。 One-hot vector虽然自然,但是用处有限。如,在互联网广告系统,如果用户输入的query是“母亲节”,而有一个广告的关键词是“康乃馨”。虽然照常理,我们知道这两个词之间是有联系的——母亲节通常应该送给母亲一束康乃馨;但是这两个词对应的one-hot vectors之间的距离度量,无论是欧氏距离还是余弦相似度(cosine similarity),由于其向量正交,都认为这两个词毫无相关性。 得出这种与我们相悖的结论的根本原因是:每个词本身的息量都太小。
小****园 2018-07-10
让PB级云存储不再神秘
本章节都是架构技术干货,无论是要自建对象存储群集、采购私有云还是采购PB级公有云都需要评估厂商的技术架构是否可靠,如果您做其他分布系统也可能会有所收获。 1、群集总览 计算机只是一个应用技术,最近几年少有颠覆性技术革新,我们做的是架构选型和调优,通过放弃某些功能来获得更高更可靠的性能,而非设计一个新模。为了实现高性能高容量的对象存储,只有将其在HTTP访问场景下做深度优化定制,让底层组件的功能简单甚至笨拙,才能实现够的性能和稳定性。 首先让大家惊讶一下,我喜欢的对象存储每个节点看起来都有点土。 大部分器拆了硬盘后价格低于两万元,没有任何吞金怪兽级硬件。 分布系统网络IO最珍贵,但为省钱我更愿意用几根千兆线做Bond。 只做入常识级系统优化,没用专用文件系统也没写裸设备,据说每个节点有50%的性能优化余地。 整体结构可以简化到不需要画架构图的地步,群集有几个功能项,你想合并成几个也行,想分成几个进程也对。 因为有超高的容错性,所以群集自协商机制较简单,嗯,应该说是简陋。
TOP