关于 那坡县找上门小姐包夜〖8843O306VX〗服务真实衅槐币文暮 的搜索结果,共1179
双****4 2018-07-11
【杂谈】猎场没么精彩--还原的猎头
第一部分.前言 无论是百科词条还是热播影视剧,猎头高端大气档次的形象都深入人心。我能理解新人初见猎头的兴奋,但猎场没么精彩,面对这种过高的期望,猎头朋友们是很尴尬的,就好像每个IT工程师的都能下载Q一样尴尬。 本的定调并不是批判猎头行业,对水货猎头的调侃才能让敬业猎头生意更好,让应聘者更少花精力在无效应付,让招聘方知道资深猎头贵在哪里。 第二部分.的低端猎头市场 大部分猎头公司的公开介绍就是几句无法查证的套话,其老板一般都是资深猎头跳槽单干,和老客户保持着半面之交的关系。猎头公司客户并不难,因为大都是无保底合同,半面之交的关系也够用了。 大部分新手猎头顾问,不管他们入职时的理想有多远大,打了半年电话以后梦想都会变成跳槽去甲方里做普通人事职员。他们即不了解面试者也不了解用人单位,为一个候选人花费时间不超过半时,他们也习惯了面试成功率是百分之一。他们并不在意应聘者和面试官的时间是否被浪费,挺高大的猎头工作,被这帮庸人做成了炸鱼游戏。高端猎头拿到简历就开始调查研究了,而这类猎头等二面以后才能记住面试者的名字。
h****e 2018-07-10
程序:我从哪里来?
干货概览 在计算机程序或者的层次,我们来试着分析前面提到的几个问题。 问题 1.我是谁? 叫什么,含了哪些例,规模、部署情况、例运行状况如何? 2.我从哪里来? 游有哪些,不同的游流量如何分配? 3.我往哪里去? 的下游有哪些,不同的下游流量如何分配? 面对这样的问题,我们的答案是什么呢? 在百度的运维践中,我们只需“BNS”就可以获得想要的答案。 BNS(Baidu Naming Service,百度名字)是百度云智能运维团队研发的一套分布式的名字系统,是百度云Noah智能运维产品中的一个重要基础系统。它为每一个赋予一个独一无二的名字,根据这个名字,我们就可以获取到这个的相关信息 ,这些信息括:在机器部署信息(机器IP,部署路径,配置,端口信息),例运行状况等其他重要信息。简单来讲,它提供了一个名到资源信息的一个映射关系。
疏****月 2018-07-09
一键线Archer | 百度持续部署的瑞士军刀
另外,Archer也可作为托管平台的底层工具链,为PaaS平台提供稳定的底层部署。 通用场景 在百度内部,通用的部署系统需要适用于以下场景: 各业线拥有各自的规范,语言、框架不统一,部署策略不一致; 支持分级发布,及时拦截部署引入的线故障; 业的多地域部署; 多种网络环境及大部署; 提高自动化效率,能够集成测试发布自动化流水线。 后面,我们将结合面场景,向大家介绍百度持续部署是如何现的。 架构 整个系统由命令行工具、web、中转及单机agent+部署插件几部分组成(如图2所示)。用户通过命令行工具触发一次变更,在web端进行参数解析及任分发,对应执行机器agent通过心跳获取任后,调用部署插件执行际任。涉及大及不同网络环境的部署会进行中转下载。 解决方案 各业线拥有各自的规范,语言、框架不统一,部署策略不一致 为避免杂乱无章又不规范的代码及配置件的目录结构,Archer规定了一套既灵活又完整的规范。
w****0 2018-07-11
单机房故障自愈-黎明之战
单机房容灾能力--盲测验收 完成以四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本条件。么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
附录2:网到一个写NTPD和ntpdate的水和本内容有些类似,个是我多年以前写的,不是借鉴和抄袭,严肃脸。
M****点 2018-07-10
中国云计算现状——产品篇
客户没有对接成本,可以随时更换其他云厂商,或默认即使用多个云厂商,普通项目不需要高级售前、解决方案和质性定制开发。 客户只关注价格和质量两个维度,不用承担太多选型责任,大不了切走就行,甚至有专的中立CDN监测的平台。 虽然业内对CDN生意评价不高,认为这就是卖资源,但每个云平台都将CDN收入列为重要单项,成熟的模式催熟了巨大蛋糕。 关于Serverless的介绍,我建议大家搜一下ZStack张鑫的章。Serverless的之处在于要求程序为自己进行改造,其他强调按需付费的计算只是快速释放资源的把戏,Serverless才是正的计算能力集装箱,未来计算场景下的CDN。 三、SaaS产品 其SaaS产品和狭义的云计算没一毛钱关系,广义的云计算连设备租赁和人员外都能算进去吹水框架,自然也给SaaS云预留了位置。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
直接损失括访问流量丢失、商业收入下降、用户体验受损、打破等级协议(SLA)造成的商业赔付等,间接损失括用户信任度下降、给竞品占领市场机会等。 单机房故障诱因众多不可避免 单机房故障诱因众多,详细复盘若干单机房故障发现故障诱因大致可以分为四类: 基础设施故障:物理机房故障、网络链路拥塞、流量转发基础设施故障等 程序缺陷:程序隐藏bug、程序性能严重退化等 变更故障:测试不充分的程序、配置、数据变更,人工临时介入的误操作等 依赖故障:第三方故障例如通用的认证、支付、存储、计算故障等 单机房故障止损可靠性与效率急需提升 人工处理场景下,运维人员通常选择7*24时值班,接收大量的报警,随时准备在紧急情况下进行响应、决策、操作一系列故障止损动作,尽量挽回损失,降低故障影响。 但述解决方案会面临如下问题: 响应可能不够迅速:例如间报警 决策可能不够精确:例如新手OP经验欠缺,误决策 操作可能出现失误:例如止损命令错误输入 “机器人”处理场景下,单机房故障自愈程序可独立完成故障感知、决策、执行的完整故障处理过程,并及时向运维人员同步故障处理状态。
s****d 2018-07-11
亿元级云用户分析
3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水长流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢到手里;而盯客户的套路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收亿的,但定个1000万的目标是能现的;如果有1000万的非冷备存储池,很容易带来数倍数十倍的计算和带宽消费。存储资源是大订单曲线突破的好选项,还是AI和大数据项目的基石,我们和客户讲的是有技术含量的故事,需要精英售前给销售做幕后军师。 配图说明:谁掌握了数据,谁就掌握了理 3.4人力资源池 亿元项目不可能是客户自助施的,人力营收占比很低但画龙点睛,可能会干掉纯卖资源的友商,也可能晚交付半月就亏损千万。
亚****啦 2018-07-11
IT断魂枪--闲聊Linux系统启动过程
看看各的启动优先级也是一个讲究多多的过程,iptables会比network先启动这类依存关系很好理解;但我也遇到过云平台的DHCP获取太慢,而云主机操作系统启动快、Network还没从DHCP里获取到IP地址,然后Mysqld等需要监听端口的启动失败。 后记 以内容只能算精简科普版的Linux系统启动过程,正式版的启动过程可以写十万字,有兴趣的朋友可以自己查维基百科,或拿我说的关键字去百度搜索。 曾经我把这些技能当做资历,但现在大家都云了,它们就只是闲聊的谈资了。但客户云就能少招一个研究这事的工程师,云确也很有意义啊。 静人稀,沙子龙关好了,一气把六十四枪刺下来;而后,拄着枪,望着天的群星,想起当年在野店荒林的威风。叹一口气,用手指慢慢摸着凉滑的枪身,又微微一笑,“不传!不传!”----老舍《断魂枪》
小****园 2018-07-10
让PB级云存储不再神秘
云存储不能违背商业的本质,甲方没蠢到敢让乙方赔钱做,但采购决策层更喜欢看谁的报价最低。数十PB的数据云后基本下不来,平台方无论是提价还是降速,有的是追加预算的手段;如果对方是赔本卖吆喝,成功了就会甩开这个袱,失败了就直接倒闭。我谈PB级存储项目时,我很愿意分享不同底层技术带来的际成本构成,为什么同样的价格我们还能挣钱而友商已经在贴钱,相关内容会在第四章节详细说明。 成功案例是很重要的决策依据,但这个依据很难考证性。厂商做过PB级项目但其是一群TB项目做的计费融合,厂商确做过数百P的项目却和标准对象存储功能不通用,这类事情太多了,对象存储合同不会有总容量,发票存根也只是简单的信息费。客户的成功案例必须是单一命名空间容量达到PB级别,并简要说明件数量和主要读写场景。考察案例性的方法主要靠听对方能否自圆其说,甚至让多个厂商当面质疑,能逻辑自治的厂商终归还是靠谱一些。 大客户对云端数据的处理的要求比中客户更简单,因为复杂业功能可以自己做,还可以要求厂商为自己做定制开发。
y****i 2018-07-11
做容器云的最佳用户
容器编排系统的核心优势 很多人都说容器云是“私有云谁用谁爽,公有云谁用谁丧”,其原因就是:容器云需要开发人员配合才能用好,而容器编排系统比容器自身更重要。K8S与其说是Docker的竞争者,不如说是容器行业的庇护者。有了K8S这个容器编排系统,虽然Docker技术不么醒目了,但其可用性更高更接地气了。 单纯用Dokcer的容器,更像是个封装的比较彻底,做足了资源隔离的JVM。研发人员只在程序出错时才会关注Runtime,而运维人员没感觉到这有什么酷的,但确容器云已经有存在的价值了。比如说OpenStack、PaddlePaddle这类新兴软件和开发框架的部署环境没么简单,用Docker一层就变的非常友好了。 对于持续集成和交付场景来说,以前我们是硬压着研发和测试,必保持版本一致、必保证件打好,从不盲信回滚预案,必须后半线,就这样还天天出故障;现在自动线的压力确多了,大家都可以放心测试生产环境一致、保证件不漏传、可以和Git无缝集成,可以扔给研发和测试半自助线了。这就是我前所说的,容器快速部署的优势在于决策的快、操作的简单。
流****水 2018-07-11
度云企业级运维平台——NoahEE
灰度测试难,怎样通过灵活的部署方式,先进行流量线测试,待效果达到预期后再扩大部署? 回滚难,发现问题后怎样回滚? 面的第一个问题,管理中已经解决了,也就是说管理帮我们完成了资源定位工作。其他的问题,NoahEE的部署管理模块通过“分级发布”来解决。在部署管理模块中,我们可以方便的定义并发度、部署步骤、影响范围以及暂停操作等,在部署的过程中发现问题即可暂停并回滚至之前的状态。除了部署等操作,部署管理模块还提供了批量执行命令等操作(比如批量启停某一)。如图来总结部署系统的能力: 图4 部署管理 监控管理 在任何工作里,信息掌握的全面与否往往关乎到工作的成败。“知己知彼百战不殆”这句话说的就是这个道理。运维工作中,监控系统就是这个让我们做到这点的关键。软硬件是否工作正常,出了问题是否能及时发现与报警,甚至是对异常事件等进行提前预测,都仰仗监控系统。在NoahEE的监控管理模块中,你可以期待全面的各种监控相关功能,括了采集Agent、强大的汇聚计算与指标派生、灵活的报警机制、高效的时序数据库(TSDB)等等。
TOP