关于 铜梁县找小姐保健按摩服务〖8843O306VX〗服务真实谛势萍 的搜索结果,共898
h****e 2018-07-10
程序:我从哪里来?
Check Agent:提供BNS例的康检查功能,用户通过在Web页面对每一个例配置康检查的方式,机器上的Check Agent会主动探测所有例的运行状况,并将康检查的结果上报给Cache层,同时更新数据库内容。 总结 BNS系统满足间交互中常见的的资源定位、IP白名单维护等需求,也可以用于机器列表查询,使用场景包括机器列表查询、定位、白名单维护、数据库智能授权等,解决了程序“我是谁?我从哪里来?该往哪里去?”的问题。 今天我们一起聊了百度云Noah智能运维产品中的BNS系统,目前系统还在持续迭代和优化中,若您想进一步了解BNS问题,欢迎大家积极留言。
w****0 2018-07-11
单机房故障自愈-黎明之战
单机房容灾能力--盲测验收 完成以上四点单机房容灾能力建设后,业线就具备了通过流量调度进行止损单机房故障的基本条件。那么如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。
红****2 2018-07-10
故障自愈机器人,你安心好睡眠
在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾近2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。例如: 2015年6月某公司云香港IDC节点电力故障崩溃12时 2016年5月某公司杭州电信接入故障,中断时级别 2017年1月某业天津机房故障,数时无法提供 2017年6月北京某处机房掉电,多家互联网公司受影响 单机房故障频繁影响业的可用性并且会给公司带来直接或间接的损失。
M****点 2018-07-10
中国云计算现状——产品篇
用好PaaS产品可以更省人力、更快交付,用量付费可能会比资源付费更便宜(也可能更贵),而PaaS平台的恼人和诱人之处均在于产品形态很模糊、质量很难评估、很难独立运营、没有领头羊企业和事标准。 PaaS云平台和IaaS云资源的区别就在于,平台需要理解客户的动作和状态。对象存储和CDN就是最典型的PaaS,云平台照数据容量、访问流量、访问次数和方法收费;Mysql RDS只能照内存和日志空间上限计费,但仍然可以替客户做数据库状态展示、分析和备份,这是过渡性的PaaS。 最常见的PaaS是数据库,最重要的PaaS是对象存储,最成熟的PaaS是CDN,最有魅力的PaaS是Serverless,我们重点看这四个。 一个经典PaaS应该只是一个进程,进程是无法长期存储数据的,量结构化数据依赖数据库存储,海量数据依赖对象存储。 云数据库(如RDS)很重要但想象空间有限,因为企业里已经有数据库和DBA了,DBA并不信任云端未知架构数据库的性能、稳定性和数据安全性,而且企业仍然需要DBA承担设计维护工作。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
而我不喜欢用ntpdate同步时间的工程师,NTPD是一个体系化的,而ntpdate只是一个动作,大部分人没做好为ntpdate这个动作负责。 正常的时间是个持续增长的向量,即老时间t1肯定于新时间t2,新时间t2也于最新的时间t3,而且t1必定会渐进增长到t2和t3。除了少数商业数据库自带时钟源以外,大部分业对系统时间是盲目信任,不相信t1会越过t2直接达到t3(即断档跃变),而t2减去t1会得到负数或者0(即时钟停滞和回逆)。 四、NTPD的优 如果我们用ntpdate同步时间,可能会带来时间的断档跃变或者停滞和回逆。时间不稳会威胁到的程序壮性和业安全性,甚至部分程序崩溃的稀里糊涂。 ntpdate只是个命令不是,它对远端时钟源是盲目信任;假设一个根NTP不稳定,所有的器获得了错误的时间,虽然现在业层可以包容异常,不会出现算出负利息或倒扣费的情况,但业混乱是免不了的。我们就说联机调试分布式日志,几个节点的时间有错可能日志就看不懂了。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
s****d 2018-07-11
亿元级云用户分析
咨询规划--如果直接给客户买资源,那就只能谈性价比,而且资源本身不会说话,所以云厂商要做好咨询规划。 明晰验收--云项目的施和结项都是以结果为导向的,明确的过程控制和验收标准对供求双方都是护。 友好接口--面对亿元大金主,云厂商的下限是类比传统IDC,要把金主伺候舒了就要学IOE类集成商。 资源持续--亿元大客户不要求云平台永不故障,但要云平台承诺清晰SLA,事后给个合理的故障报告。 后记 如我在《复制阿里云并不难》中所说的,一个云行业半个IT界”,云行业将垄断IT界一半的营收和利润。本文讨论的亿元大项目,目标就是拿下IT圈的营收上限。现在亿元大单都是云厂商在侵入系统集成商的力范围,后面云厂商会得到越来越多的亿元大单。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
Archer的配置文件路径、的启停脚本及运维命令具有固定的标准并且支持定制化,使用Archer进行部署的具有统一的包结构; 支持分级发布,及时拦截部署引入的线上故障 针对分级发布的使用场景,Archer支持串并行上线及暂停点功能,可照单例、单机房、单地域等级别设置暂停点,并支持部署过程中进行暂停、继续、重试、撤销等操作; 业的多地域部署 的多地域部署主要需要解决不同地域配置不同的问题。Archer提供了配置派生功能以支持多地域部署的场景。Archer支持在同一份配置文件中设置配置变量,并在特定地域(机房)中生成特定配置值; 多种网络环境及大包部署 针对多种网络环境及大包部署的使用场景,Archer提供了部署数据中转传输。采用中转的上线在发起任后,部分代码将首先被转存至中转机上。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不足,但面对大客户时会很坦诚。 作为持久共生的大甲方,请关注乙方的成本红线,买家永远没有卖家精。如果甲方给够钱了,乙方仍然用劣质硬件IDC和过高超售比,云厂商一般是老板带头节俭,而大云厂商很可能是执行层的人弄错了,作为甲方该闹就要闹。 人为原因 云厂商的人为故障总是糊涂账,但细心的甲方是能看出来端倪的。有时候厂商想遮蔽技术和资源的问题,会说是人为原因,缓过这一次故障赶紧修订BUG和准备资源;有时候明明是人为原因,但人为故障都是打脸锤,厂商脸会肿而且要赔偿,可能会个其他原因来给脸部降降温。 对于落是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的际损失更,甲方无法触及云厂商能倒腾出故障的部门。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买到靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,长期看商业信誉。
流****水 2018-07-11
度云企业级运维平台——NoahEE
Noah来源于圣经中“诺亚方舟”的故事,我们用这个名字来寓意能够避免灾难,稳固而坚的平台。作为一系列运维系统的集合,Noah包括了管理、机器管理、资源定位、监控报警、自动部署、任调度等等,已经了百度数年之久。我们推出的NoahEE(Noah Enterprise Edition)脱始于Noah,为企业提供了一站式运维解决方案,覆盖了包括日常的故障管理和变更管理中典型的运维场景,致力于为政企、金融、教育等行业提供业可用性障、提升运维效率。 图1 NoahEE概览 接下来,我们把这艘诺亚方舟分解开来,近距离观察一下这艘船的方方面面。 管理 我们首先介绍管理是因为管理是整个运维工作的基础,也是NoahEE这个平台上各个系统能够进行批量自动化操作的关键。管理这个概念的出现,是随着业快速膨胀的必然,其要解决的主要问题是一个“量”,或者说“规模”的问题。在早期业较为简单时,一个可能部署在几台甚至一台机器上,进行变更等运维操作简单直接,登录到机器上人工操作就好了。随着业的发展,分布式应用与的广泛使用,我们越来越多的面临着运维场景与运维执行之间的脱节。
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维职位展望
生产领域的公司因为运维涉及到在在的钱,所以运维人员待遇高(都是专有技术难培养)、做的事情少(自发做事多了会出错,不如厂商技术支持),只是跳槽的难度比通用运维要大一些(都是专有技术不通用) 4、彻底转型,做和计算机无关的工作;选这条路的人一部分是自己有大觉悟或巧机缘,但另一部分人是的适应不了环境变化,希望各位不要被淘汰掉。 最后总结一下,云计算是不可阻挡的历史趋,它还给了运维五到十年的时间去修正自己的职场规划,我们可以顺而为也可以激流勇进,但不可得过且过随波逐流最终。 天行,君子自强不息。
布****五 2018-07-10
如何执行一条命令
可是如果要在几十万台机器上每天执行几十亿条命令,同时证时效性,证执行成功率,证结果正确收集,证7*24时稳定运行,就不是一件简单的事情了。所谓远行无轻担,量大易也难,在构建这样的执行系统的过程中要面临诸多困难,此处举几个突出的例子如下: 信息存储问题:为了支持水平扩展,需要高效的内存数据库作为缓存。为了做到执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达到在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及怎么样的并发度批量下发。 消息传输问题:为了证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。
追****圣 2018-07-11
给书记省长讲清楚云计算
云计算不会产生污染,所以不用考虑环减排问题,但其带来的环节能问题很严重,每个数据中心都会占用大量电力。 对于四线城市政府和中型国企,因为现困难资源有限是搞不了云计算的;二三线城市和大型国企才能提供云计算公司感兴趣的资源。
p****d 2018-07-11
单机房故障自愈--运维的春天
固定比例模式:照预先设定的固定预案,一个机房故障,该机房的流量照预先设定的比例分配到其他的机房。很可能某个机房的容量或剩余机房的总容量不足,切流量后导致多个机房发生故障。 容量护模式:针对固定比例模式存在的容量风险问题,改进的流量调度方式为执行前判断容量是否充足,容量充足则进行流量调度,否则不进行调度并通知人工介入处理。但此种方案面对的问题是: 1.容量仍有buffer可以进行部分止损。期望能够在不超过容量护的情况下进行尽可能的调度,减少对用户的影响。 2.即使照容量进行调度,过载仍可能发生,容量数据本身存在一定误差,流量成分的变化以及变更等导致的容量退化,都可能导致原先容量无法完全可信。 【解决方案】 基于容量水位的动态均衡 在流量调度时,对于容量不准确存在的风险,我们划分两条容量警戒线。 安全水位线:流量处于在安全线以下则风险较,可以一步进行切换。 水位上限:该水位线表明的最大承载能力,一旦流量超过故障水位线,很大概率会导致容量过载。
小****园 2018-07-10
让PB级云存储不再神秘
数据去重问题 对象存储不做数据去重功能,看着简单的功能背后都有蛛网一样的复杂考量,元数据、计费、存储、增数据逻辑、删数据逻辑、回收空间逻辑、用户资源隔离逻辑都会因为这个很炫的功能被彻底改变。正要去重的文件就是那些电影,随着版权护的加深,电影只存原片盗版减少会是趋,其他文件即使做切片去重,命中率也非常低。我们提供hash值让客户判断该不该删文件,该不该做文件映射就够了。 长周期软硬件换代 对象存储是付费企业级,并不是终身免费但匆匆关张的个人网盘。我们必须考虑十年为刻度的长周期维护问题,某种硬件停产了怎么办,假设系统内核停止维护怎么办?我强烈反对极端优化单点性能,就是因为单点性能极限优化必然和硬件、内核、文件系统都有深度关联。我推荐存储主力是应用层用户态进程,老中青三代器和谐运行,群集性能瓶颈本来就不在单点,不要给自己的软件无故设限。 冷存储问题 冷存储分冷和低温两种类型,冷存储就是用磁带、蓝光盘、可离线存储节点来存储数据,这样可以节省机柜电量,但这是个工程学问题不是计算机问题了。
h****8 2018-07-10
能力比梦想更重要——企业级难寻产品经理
ToB产品经理的岗位需求太少、对人的要求太高、出业绩太难,又难有超高收益,为什么不踏踏的继续做团队管理、做研发售前、做解决方案? 如果你的团队运气好,遇到一个合适的产品经理,请容忍他短时间不出活,请容忍他拒了客户需求,请容忍他给研发添工作量,因为合格的产品经理要背负和团队负责人一样大的选型责任,他名字叫产品经理,但本质上是软件和设计师。
若****客 2018-07-10
IT架构的本质--我的五点感悟
各角色分工明确方便快速现业,但是给架构优化也埋下大坑,底层的盲目支撑是巨大资源浪费,平级调度协作也没任何弹性。前端一个逻辑需求会导致后端大规模联动,不同也没权限理解对方的内存数据,各个角色的工程师都只看自己的工作范围,这是正常又无奈的现状。 我们要搞架构设计最重要的就是砍需求,将上层应用的需求优化删减,让同级的业能容错。上层需求优化,即前端对后端少输入少查询多容错,而同级容错可以看做应用间的需求优化,比如两个可以幂等重试就是好解耦,而A系统会等B系统等到死锁就是架构悲剧。 某电商ERP系统的用户点一次查询钮,后台系统就锁库查询一次;操过程中系统越慢用户就重复点查询钮,而并行查询越多后台速度就更慢。这种环境要搞架构优化,首先要理解自然人并不要求时数据,ERP客户端限制每15秒才能点一次查询钮,在Web接入层限制每个Session每分钟只能查询一次,还可在数据库链接类库上做一层控制策略。
TOP