关于 长宁县怎么找到附近服务〖8843O306VX〗服务真实蓝灿傧侨兔 的搜索结果,共1148
h****e 2018-07-10
程序:我从哪里来?
在BNS系统中,单元表示一个例集合,一般以三段式的结构表示,比如:server.noah.all,server表示名,noah表示产品线,all表示机房名称,单元的名字在系统中是唯一的。 使用场景 在程序员的日常工作,常常面临以下的场景: 场景 场景一:我是一名OP工程师,负责几十个系统模块的运维,我常常需要登录部署的机器排查问题,但是只知道名,记不住那多部署信息,办? 场景二:我是一名RD工程师,我负责的需要扩容,我的是很多下游的依赖,的扩容通知给下游模块? 场景三:我的部署例有一个出现故障了,我想对下游屏蔽该故障例,办? 下面以一个简单的例子来说明,假设一个模块名是Server,它的上游是Proxy,下游是Redis,当出现变更或者故障时,如何让上游感知呢? 当新增上线例、下线摘除例或者例发生故障时,BNS系统通过部署在机器上的客户端时感知例的状态变化,同时新增和删除例的变更情况会立即同步分布式的缓存系统中,这样用户通过一个BNS名字就可以感知下游的例变化。
w****0 2018-07-11
单机房故障自愈-黎明之战
如何验证业线是否具备该能力、能力是否出现退化,我们采取盲测验收的方式,模拟或制造故障,验证不同业线故障情况及止损效率,并给出相应的优化意见。 根据业线进行容灾能力建设的不同阶段,我们从对产品际可用性影响程度、成本、效果等方面权衡,将盲测分为三种类型: 无损盲测:仅从监控数据层面假造故障,同时被测业可根据监控数据决策流量调度目标,对于业际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整。 提前通知有损盲测:植入际故障,从网络、连接关系等基础设施层面植入错误,对业有损,用于战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力。同时提前告知业盲测时间和可能的影响,业线运维人员可以提前准备相应的止损操作,减少单机房止损能力建设不完善导致的损失。 无通知有损盲测:在各业线单机房容灾能力建设完成后,进行不提前通知的有损盲测,对业来说与发生故障场景完全相同。验证业线在单机房故障情况下的止损恢复能力。 单机房故障止损流程 一个完整的故障处理生命周期包括感知、止损、定位、分析四个阶段。
s****7 2018-07-10
见微知著看技术误解——从裸光纤和NTPD谈起
录2:网上能一个写NTPD和ntpdate的水文和本文内容有些类似,那个是我多年以前写的,不是借鉴和抄袭,严肃脸。
红****2 2018-07-10
故障自愈机器人,保你安心好睡眠
干货概览 在大型互联网公司中,单机房故障因为其故障时间、影响范围大,一直是互联网公司运维人员的心头之痛。在传统的运维方式中,由于故障感知判断、流量调度决策的复杂性,通常需要人工止损,但人工处理的时效性会影响的恢复速度,同时人的不可靠性也可能导致问题扩大。 为了解决这类问题,我们针对百度内外部网络环境建设了基于智能流量调度的单机房故障自愈能力。结合外网运营商链路监测、内网链路质量监测与业指标监控构建了全方位故障发现能力,基于百度统一前端(BFE)与百度名字(BNS)现了智能流量调度与自动止损能力。同时,基于时容量与时流量调度自动止损策略与管控风险,现了任意单机房故障时业均可快速自愈的效果。当前此解决方案已覆盖搜索、广告、信息流、贴吧、地图等众多核心产品的单机房故障自愈场景。 单机房故障频发影响业可用性 回顾2年来各大互联网公司被披露的故障事件,单机房故障层出不穷。
M****点 2018-07-10
中国云计算现状——产品篇
肯定有读者怪我认识浅薄,但是云内资源调度都做不好的用户,能做好跨云的资源调度。 既然谈了混合云,肯定就要谈云管平台,云管平台不是伪需求而是新需求。当客户的非CDN云资源采购金额过500万以后,其子项目之间没有内网互通的需求,这时候该做一个跨厂商的云端资源管理方案了。现在虚拟机不能像CDN一样随意迁移,但未来Serverless崛起,计算能力也会在多厂商之间漂移的。客户提前把云管平台从计费和权限层面做好,至少在项目级别可以和多个厂商侃价,还能模糊计费相关业数据。 五、企业IT咨询和 前面的云计算都免不了卖资源或者卖软件,搞IT咨询和可以让公司增加企业的融资概念和收入构成。中小型云厂商都尝试转型做这类工作避开成本搏杀,大厂商嘴上说不要眼神也很诚。但具体参与过程中,这类工作很少有成功案例,我做成功过这类项目感慨也很深,本段落重点解释这些现象并给出建议。 先说IT咨询,过去云计算平台吸引的都是成本敏感的游戏客户或者技术优先的创业客户,这两类客户都不会为一小时一千元的咨询付费。
s****d 2018-07-11
亿元级云用户分析
3.1 IaaS计算池 IaaS计算池,交付给客户的是CPU+内存+本地盘+本地网+IDC电力,产品形式可以是虚拟机、裸金属、容器,或者预装了数据库-大数据-队列等的模板化云主机,决定资源池成本的是硬件和电力的价格,以及内部浪费程度。销售铁三角对硬件资源池的包装,完成资源成本分析、交付展示和付款周期核算;在硬件资源池交付时,云厂商的优势处是大规模交付和成本控制,至于短处——家家有本难念的经。 3.2 CDN和带宽池 CDN和带宽池不同于器硬件,其原始资源是相对稀缺死板的广域网带宽,其交付的资源是持续不断的,所以资源部署比较慎重但客户流动成本较低。制约客户全量迁移的是厂商的承载能力,而挖角和反挖时刻都在细水流。CDN和带宽池首先考察的是企业内功,有没有廉价海量资源;再考验销售内部协调能力,能不能把好资源好价格抢手里;而盯客户的套路和百万级销售类似,工作力度加大三五倍而已。 3.3数据存储池 数据存储池是很难年均摊营收上亿的,但定个1000万的小目标是能现的;如果有1000万的非冷备存储池,那很容易带来数倍数十倍的计算和带宽消费。
流****水 2018-07-11
度云企业级运维平台——NoahEE
一图胜千言,我们看看资产管理的特点: 图3 资产管理 部署管理 应用部署一直是运维工作中的重点,一般来说,我们面临的问题有: 批量部署难,样定位目标机器?如何快速部署? 灰度测试难,样通过灵活的部署方式,先进行小流量线上测试,待效果达预期后再扩大部署? 回滚难,发现问题后样回滚? 上面的第一个问题,际上在管理中已经解决了,也就是说管理帮我们完成了资源定位工作。其他的问题,NoahEE的部署管理模块通过“分级发布”来解决。在部署管理模块中,我们可以方便的定义并发度、部署步骤、影响范围以及暂停操作等,在部署的过程中发现问题即可暂停并回滚至之前的状态。除了部署等操作,部署管理模块还提供了批量执行命令等操作(比如批量启停某一)。如图来总结部署系统的能力: 图4 部署管理 监控管理 在任何工作里,信息掌握的全面与否往往关乎工作的成败。“知己知彼百战不殆”这句话说的就是这个道理。运维工作中,监控系统就是这个让我们做这点的关键。软硬件是否工作正常,出了问题是否能及时发现与报警,甚至是对异常事件等进行提前预测,都仰仗监控系统。
s****0 2020-08-29
百度云主机网络延迟问题
是很买 打折买了几台器 目前都荒废了,因为卡得一匹。
疏****月 2018-07-09
一键上线Archer | 百度持续部署的瑞士军刀
后面任下发至具体机器,具体机器再从中转机拉取需要被部署的文件;中转机也为跨网络环境的部署提供了可能,隔离网段中的机器无法访问内网机器,通过中转的“搭桥”完成了跨网段的数据传输; 提高自动化效率,能够集成测试发布自动化流水线 自动化效率方面,Archer提供了命令行工具,可接入各种脚本、平台。另外,Archer也可定制化单机流程:针对不同的业场景,Archer提供了名为“operation_list” 的配置文件,采用YAML语法。单机执行流程步骤被定制化成固定几个种类。用户通过简单的配置,即可现“启停监控”、“启停”、“数据传输”、“执行某些命令或脚本”、“启停定时任”等上线过程中的常见操作的自由组织及编排。这种形式大大扩展了Archer的适用范围。在了解Archer使用方法的情况下,OP几分钟内即可配置出适用于数十条不同产品的上线方案。 其他设计点 每次的部署流程通过web总控端的参数解析后,就被作为任下发每台被部署的目标机器。当部署任从总控端发被部署机器上时,任的具体执行依赖agent及一系列脚本。
雪****魁 2018-07-11
危险背后的机遇--云故障危机分析
资源投入 云资源贩售过程中,合格的厂商可以让云资源物有所值,但巧妇难为无米之炊,原始资源投入不够云就不可能很稳定。面向中小客户的时候,云厂商很忌讳透露具体硬件成本,也尽量避免承认资源不足,但面对大客户时会很坦诚。 作为持久共生的大甲方,请关注乙方的成本红线,买家永远没有卖家精。如果甲方给够钱了,乙方仍然用劣质硬件IDC和过高超售比,小云厂商一般是老板带头节俭,而大云厂商很可能是执行层的人弄错了,作为甲方该闹就要闹。 人为原因 云厂商的人为故障总是糊涂账,但细心的甲方是能看出来端倪的。有时候厂商想遮蔽技术和资源的问题,会说是人为原因,缓过这一次故障赶紧修订BUG和准备资源;有时候明明是人为原因,但人为故障都是打脸锤,厂商脸会肿而且要赔偿,可能会个其他原因来给脸部降降温。 对于落是人为导致的故障,甲方单纯的索赔追责并不能解决问题,因为云厂商总是比甲方的际损失更小,甲方无法触及云厂商能倒腾出故障的部门。甲方只能根据云厂商销售和线的能力和态度,确认自己交钱了能否买靠谱的。 最重是商誉 云计算既是资源又是,资源相对可以量化,但短期内看直观感受,期看商业信誉。
追****圣 2018-07-11
给书记省讲清楚云计算
这类厂商在国内发展都不太顺,和他们沟通主要看他们有什合作诚意,是否穷极思变。 最后一类是系统集成企业,这类厂商已经地方政企几十年了。他们最大的优点和缺点都是为政府和国企为生,他们可以买技术搭建出云平台,但他们建好云平台的目的是再卖给本地政府和国企。这类企业需要完成从供应商合作方的转变。 云计算不是万能药,它无法解决哪些问题。 在地方政企看来,云计算只是一种商业形式,不能对它报以不切际的期望值。 云计算行业不需要大量雇佣本地劳动力,无法解决大批就业问题;云计算核心员工会呆在一线城市远程操控,很难将云计算人才引进当地。 云计算不会产生污染,所以不用考虑环保减排问题,但其带来的环保节能问题很严重,每个数据中心都会占用大量电力。 对于四线城市政府和中小型国企,因为现困难资源有限是搞不了云计算的;二三线城市和大型国企才能提供云计算公司感兴趣的资源。
l****m 2018-07-10
五年前的预言——2012年云计算时代的运维职位展望
我在写一篇新的文章,其中会引用这篇2012年的旧文,所以我原样摘抄下来,很庆幸能转型进入云计算这个行业。 云计算的时代正在来临,运维的工作也将在今后几年中发生翻天覆地的变化。 如果你是一个能给自己做主的人,你必须看清形势顺势而为,在变革的时代埋头苦干仍然保证不了你的正常生活;如果你是一个弓骑兵,无论你勤学苦练都打不过坦克手的;铁达尼号上的乘客无论多有钱,总是免不了泡进海水里的。 首先,我作为一个运维为何唱衰运维这个职业。 我们运维靠什能力在公司里自立哪? A.关心硬件和施工; B.关注网络问题; C.擅系统和的调试维护; D.相对与架构师/DBA的价格优势; E.快速可靠的响应. 大家看看云计算能给企业带来的好处。 A.硬件完全免维护; B.网络接免维护; C.系统、免维护; D.无论是硬件还是人力成本都很廉价; E.可靠性高于个人。 我们会发现,云计算的目标就是要做的比运维人员更好,好“不用关心”的地步。从技术上来说,各大云计算运营商对通用的Web、RDBMS、存储 都是可以做很好的。
小****园 2018-07-10
让PB级云存储不再神秘
数据去重问题 对象存储不做数据去重功能,看着简单的功能背后都有蛛网一样的复杂考量,元数据、计费、存储、增数据逻辑、删数据逻辑、回收空间逻辑、用户资源隔离逻辑都会因为这个很炫的功能被彻底改变。正要去重的文件就是那些电影,随着版权保护的加深,电影只存原片盗版减少会是趋势,其他文件即使做切片去重,命中率也非常低。我们提供hash值让客户判断该不该删文件,该不该做文件映射就够了。 周期软硬件换代 对象存储是付费企业级,并不是终身免费但匆匆关张的个人网盘。我们必须考虑十年为刻度的周期维护问题,某种硬件停产了办,假设系统内核停止维护办?我强烈反对极端优化单点性能,就是因为单点性能极限优化必然和硬件、内核、文件系统都有深度关联。我推荐存储主力是应用层用户态进程,老中青三代器和谐运行,群集性能瓶颈本来就不在单点,不要给自己的软件无故设限。 冷存储问题 冷存储分冷和低温两种类型,冷存储就是用磁带、光盘、可离线存储节点来存储数据,这样可以节省机柜电量,但这是个工程学问题不是计算机问题了。
布****五 2018-07-10
如何执行一条命令
为了做执行命令的可追溯、可统计,需要对执行过的命令信息持久化。日均几十亿的热数据,年均上万亿的冷数据,需要仔细选择存储方案。 任调度问题:为了达在任意多台器上执行命令的要求,需要确定何时分发命令、何时回收结果以及样的并发度批量下发。 消息传输问题:为了保证命令高效正确送达目标器,需要构建一个可靠的命令传输网络,使命令信息在准确送达的前提下保障传输的可靠与高效,毕竟百度的几十万台器分布在世界各地。 代理执行问题:为了更好的处理权限、单机并发等单机执行问题,需要在目标机构建执行代理,以应对单机的复杂执行环境。 图2简单问题放大后也变得困难 百度目前拥有分布在世界各地的几十万台器,并且随着业的不断扩张,这个数字还在持续增,构建一个高效稳定通用可扩展的命令描述、传递、执行系统在这样的环境中有着重要的现意义。对百度各产品线的用户来说,这样的一个系统,最基础的要求是:执行高效,控制灵活,扩展方便。 1.执行高效: 单机执行,要求能够达秒级命令下发/执行/结果收集。 集群执行,要求支持同时在10万台器上并行执行,同时保证集群中每个机器达单机执行的性能。
双****4 2018-07-11
【杂谈】猎场没那精彩--还原的猎头
第四点,猎头不会固执于一个项目,猎头不会跟候选人强推意向单位的宏大图,因为候选人本人也是业内专家不用猎头来教;更不会向甲方强推候选人,面试官眼拙运气差那就只能认栽,本公司bHR都无法说得的面试官,外部猎头能说什?而且稀缺人才总是供不应求的,转手把这个人卖给别的公司或者别的猎头一样能拿佣金 第四部分.如何识别资深还是新手猎头 面试者来看资深猎头和新手猎头是很容易区别的。 新手猎头只会看你的履历里几个技能和职位的关键字,除此之外一个字都不懂;资深猎头有眼睛有脑子,会分析和询问你的简历。 新手猎头对职位的解析和路人甲没什区别,只会强调待遇、级别和公司是名企;资深猎头可以说明这个职位在该企业内是具体做什的,有多大重要性。 新手猎头是撒网炸鱼,对每个面试者没花时间也并不热心;资深猎头为了一次面试准备了超过水货同行十倍的时间,催面试反馈她比你还着急。 当遭遇面试失败,资深猎头能要失败原因通报给候选人,而新手猎头不关注面试失败原因,用人部门给的失败原因都是敷衍套话。 也有一部分猎头会和优质候选人保持时间关系,但这太费时间了,猎头五年内给同一个候选人介绍两次工作的几率在是太小了。
TOP