目前,深度学习主要以神经网络模型为基础,研究如何设计模型结构,如何有效地学习模型的参数,如何优化模型性能以及在不同任务上的应用等。 生物神经网络的最小单元是神经元。而人工神经网络的最小单元是感知机。
1.2 奇妙的风格化效果 将计算机视觉技术应用在App中,可以为图片实现滤镜效果。使用深度学习技术实现的风格化滤镜效果非常魔幻。
但是,近年来,深度学习以其高准确率、有效性、高效率和处理海量数据的能力而受到广泛欢迎。
下图展示了深度强化学习这8年来的里程碑成果,非常激动人心: 在这篇文章中,我们想探讨三个方面的内容: (1)深度强化学习当前的核心技术(2)深度强化学习需要解决的问题(3)深度强化学习未来可能的发展方向
这个报告讨论了将深度学习方法引入音频信号处理中的一些尝试和初步结果。 音频信号的深度学习处理方法 报告主要包括音频信号领域的研究方向介绍和将深度学习方法引入音频信号处理中的尝试和初步结果。
深度学习训练中数据并行的实现方式可以有多种,下文介绍的数据并行是基于Distributed Synchronous SGD的梯度同步数据并行,这是目前主流深度学习训练框架中数据并行的实现方式。
2.深度学习和机器学习的关系 深度学习是机器学习的最热门分支,这句话足以解释深度学习和机器学习的关系。
对于绝大部分用户,仅需一行命令即可完成深度学习模型的服务部署工作。此外 Paddle Serving 提供了两种语言(Python/C++)编写的服务框架,方便深度用户选择自己熟悉的编程语言二次开发。
随着AI产业化落地应用的蓬勃发展,深度学习框架的关注度越来越高。近几年,国内产学联合持续发力,形成了一股国产深度学习框架的开源风潮。