logo

人工智能模型数据泄露的攻击与防御研究综述

作者:小门神2021.07.01 10:48浏览量:326

简介:人工智能模型数据泄露的攻击与防御研究综述

论文标题:人工智能模型数据泄露的攻击与防御研究综述
论文链接:http://www.infocomm-journal.com/cjnis/CN/10.11959/j.issn.2096-109x.2021001
作者单位:浙江大学网络空间安全学院

人工智能和深度学习算法正在高速发展,这些新兴技术在音视频识别、自然语言处理等领域已经得到了广泛应用。然而,近年来研究者发现,当前主流的人工智能模型中存在着诸多安全隐患,并且这些隐患会限制人工智能技术的进一步发展。因此,研究了人工智能模型中的数据安全与隐私保护问题。对于数据与隐私泄露问题,主要研究了基于模型输出的数据泄露问题和基于模型更新的数据泄露问题。在基于模型输出的数据泄露问题中,主要探讨了模型窃取攻击、模型逆向攻击、成员推断攻击的原理和研究现状;在基于模型更新的数据泄露问题中,探讨了在分布式训练过程中,攻击者如何窃取隐私数据的相关研究。对于数据与隐私保护问题,主要研究了常用的 3 类防御方法,即模型结构防御,信息混淆防御,查询控制防御。综上,围绕人工智能深度学习模型的数据安全与隐私保护领域中最前沿的研究成果,探讨了人工智能深度学习模型的数据窃取和防御技术的理论基础、重要成果以及相关应用。

相关文章推荐

发表评论