PyTorch: A Framework for Fast, Flexible AI
2023.11.03 03:54浏览量:42简介:pytorch psnr pytorch psnr和ssim
千帆应用开发平台“智能体Pro”全新上线 限时免费体验
面向慢思考场景,支持低代码配置的方式创建“智能体Pro”应用
pytorch psnr pytorch psnr和ssim
随着深度学习技术的快速发展,PyTorch已经成为图像处理和计算机视觉领域中广泛使用的一种深度学习框架。在图像质量评估方面,峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和结构相似性(Structural Similarity Index,SSIM)是两个重要的评估指标。本文将重点介绍PyTorch中PSNR和SSIM的实现方式,并通过实验验证其有效性。
PSNR是一种衡量图像质量的客观指标,它通过比较原始图像和重建图像之间的峰值信噪比来评估图像的质量。PSNR值越高,说明重建图像的质量越好。在PyTorch中,可以通过以下代码实现PSNR的计算:
import torch.nn.functional as F
def psnr(img1, img2):
mse = F.mse_loss(img1, img2)
psnr = 20 * torch.log10(1 / mse)
return psnr
上述代码中,我们使用了PyTorch中的均方误差损失函数(MSE loss)来计算图像之间的误差,然后通过20倍的对数公式将误差转化为PSNR值。
SSIM则是一种衡量图像结构相似性的客观指标,它通过比较两个图像的结构相似性来评估图像的质量。SSIM值越接近1,说明两个图像的结构越相似,图像质量越好。在PyTorch中,可以通过以下代码实现SSIM的计算:
```python
import torch.nn.functional as F
import torchvision.transforms.functional as Ft
def ssim(img1, img2, size=11, k1=0.01, k2=0.03, b=0.1, eps=1e-8):
C1 = (k1 255) ** 2
C2 = (k2 255) 2
mu1 = F.avg_pool2d(img1, size)
mu2 = F.avg_pool2d(img2, size)
sigma1 = F.avg_pool2d(img1 2, size) - mu1 2
sigma2 = F.avg_pool2d(img2 2, size) - mu2 2
sigma3 = F.avg_pool2d((img1 - img2) 2, size) - mu1 2 - mu2 2 - sigma1 + sigma2
cs = torch.mean(sigma3 + eps) # local variance (contrast) to reduce flat area ssim佻 grievance. contrast sensitivity of vision for image by animal is constant CFRs by random patterns which animal has in the visual field of the natural image of which a few is shown in the picture at the top of the article to reduce ssim properly that human subjective can see with random pattern having some background better image has local low pass filter has CFR as random pattern from actual background without strong visual features if so use mask filter. without cs i/s higher(crispier/grainier);CS as low as possible for ssim better;CS as high as possible for edge detection better. CS as high as possible for human subjective better but CS is only a few so just reduce it a bit & ssim will be much better! For CS reduce:sigma3+eps:torch.mean(sigma3+eps)CS=CS/(CS+eps)CS=CS/(CS+eps)CS=CS/(CS+eps); For ssim:sigma3+eps:torch.mean(sigma3+eps)torch.mean((mu1-mu2)**2+eps)torch.mean((sigma1-sigma2)2+eps)*torch.mean((sigma1+sigma2)2/(sigma12+sigma22+eps)+eps)-50(torch.mean((mu1-mu2)2+eps)+torch.mean((sigma1-sigma2)2+eps)+torch.mean((sigma1+sigma2)2/(sigma12+sigma22+eps)+eps))/torch.mean((mu1+mu2)2/(sigma1+sigma2)/(torch.mean((mu1-mu2)2+eps)+torch.mean((sigma1-sigma2)2+eps)+torch.mean((sigma1+sigma2)2/(sigma12+sigma2*2+eps)+eps))-(cs+eps)/torch.mean((mu1+mu2)2/(sigma1+sigma2)/(torch.mean((mu1

发表评论
登录后可评论,请前往 登录 或 注册