人脸识别损失函数:ArcFace、SphereFace与CosFace
2023.12.19 04:52浏览量:12简介:人脸识别损失函数简介与Pytorch实现:ArcFace、SphereFace、CosFace
千帆应用开发平台“智能体Pro”全新上线 限时免费体验
面向慢思考场景,支持低代码配置的方式创建“智能体Pro”应用
人脸识别损失函数简介与Pytorch实现:ArcFace、SphereFace、CosFace
人脸识别是计算机视觉领域的重要应用之一,而损失函数在人脸识别算法中起着关键作用。本文将简要介绍三种常见的人脸识别损失函数:ArcFace、SphereFace和CosFace,并给出使用Pytorch实现的代码示例。
一、ArcFace
ArcFace(Additive Angular Margin Loss for Deep Face Recognition)是一种基于角度的损失函数,通过在特征向量之间添加角度边界来提高识别性能。在ArcFace中,损失函数定义为:
L(θi,j)=−logσ(cos(θij)+12)\text{L}(\theta{i,j}) = -\log\sigma(\cos(\theta{i,j}) + \frac{1}{2})L(θi,j)=−logσ(cos(θi,j)+21)其中,σ(\cdot)表示softmax函数,θi,j\theta_{i,j}θi,j表示第i个样本和第j个类别之间的角度。
在Pytorch中实现ArcFace的代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
class ArcFace(nn.Module):
def __init__(self, in_features, out_features):
super(ArcFace, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.randn(out_features, in_features))
self.bias = nn.Parameter(torch.zeros(out_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, nn.Linear)
nn.init.zeros_(self.bias)
def forward(self, input, target):
cosθ = F.cosine_similarity(input, self.weight.mm(target))
cosθ = cosθ + 1e-6 # adding a small constant to avoid log(0)
cosθ = F.softmax(cosθ, dim=1)
loss = -F.log_softmax(cosθ, dim=1).view(-1, self.out_features).mean(dim=0).mean()
return loss
二、SphereFace
SphereFace(Additive Margin Loss for Deep Face Recognition)是一种通过在特征向量之间添加马氏距离边界来提高识别性能的损失函数。在SphereFace中,损失函数定义为:
L(θi,j)=−logσ([cos(θij)+12]\text{arctan}(tan(mi+r)+tan(Mj)))\text{L}(\theta{i,j}) = -\log\sigma\left[\cos(\theta{i,j}) + \frac{1}{2}\right] \text{arctan}\left(\tan(mi + r) + \tan(Mj)\right)L(θi,j)=−logσ([cos(θi,j)+21]arctan(tan(mi+r)+tan(Mj)))其中,mi和M_j分别表示第i个样本和第j个类别的马氏距离边界。
在Pytorch中实现SphereFace的代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class SphereFace(nn.Module):
def __init(self, in_features, out_features):
super(SphereFace, self).__init()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.randn(out_features, in_features))
self.bias = nn.Parameter(torch.zeros(out_features))
self.margin = nn.Parameter(torch.zeros(out_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform(self.weight, nn.Linear)
nn.init.zeros(self.bias)
nn.init.zeros(self.margin)
def forward(self, input, target):
cosθ = F.cosine_similarity(

发表评论
登录后可评论,请前往 登录 或 注册