Python中两种常用的拉丁超立方采样(Latin Hypercube Sampling, LHS)方法
2024.01.17 13:43浏览量:42简介:拉丁超立方采样(Latin Hypercube Sampling, LHS)是一种常用的统计采样技术,主要用于参数优化和模型验证。本文将介绍两种常用的Python调包来进行拉丁超立方采样:`pyDOE2`和`scipy`。
千帆应用开发平台“智能体Pro”全新上线 限时免费体验
面向慢思考场景,支持低代码配置的方式创建“智能体Pro”应用
拉丁超立方采样(Latin Hypercube Sampling, LHS)是一种统计采样技术,用于生成一组样本点,这些样本点在参数空间中均匀分布,并且满足每个维度只有一个样本点落在该维度的取值范围内。LHS常用于参数优化和模型验证等领域。在Python中,有几种常用的包可以进行拉丁超立方采样,下面介绍两种常用的方法。
1. 使用pyDOE2
包pyDOE2
是一个Python包,提供了多种用于实验设计和优化的工具,包括拉丁超立方采样。要使用pyDOE2
进行拉丁超立方采样,首先需要安装该包。可以使用pip进行安装:
pip install pyDOE2
然后,可以使用以下代码进行拉丁超立方采样:
import numpy as np
from pyDOE2 import lhs
# 定义参数维度和范围
dim = 2 # 维度数
bounds = [(-1, 1)] * dim # 参数范围,这里假设每个维度都在-1到1之间
# 生成拉丁超立方采样点
n_samples = 100 # 采样点数
samples = lhs(dim, samples=n_samples, criterion='center')
# 将采样点转换为参数值
param_values = np.array([np.random.uniform(low, high) for low, high in bounds]).T * samples
print(param_values)
2. 使用scipy
包
除了pyDOE2
之外,另一个常用的Python包是scipy
。虽然scipy
本身不提供拉丁超立方采样的函数,但可以通过组合使用其他函数来实现。首先,需要安装scipy
包:
pip install scipy
然后,可以使用以下代码进行拉丁超立方采样:
import numpy as np
from scipy.stats import uniform
# 定义参数维度和范围
dim = 2 # 维度数
bounds = [(-1, 1)] * dim # 参数范围,这里假设每个维度都在-1到1之间
# 生成拉丁超立方采样点
n_samples = 100 # 采样点数
samples = np.random.uniform(low=bounds[0][0], high=bounds[0][1], size=(n_samples, dim))
# 将采样点转换为参数值
param_values = []
for sample in samples:
param_values.append([uniform.ppf(sample[i]/sample[0]) for i in range(dim)])
param_values = np.array(param_values)
print(param_values)
以上两种方法都可以用来生成拉丁超立方采样点。使用pyDOE2
更加方便,因为它提供了专门的函数来进行拉丁超立方采样。而使用scipy
则需要自己组合函数来实现,但有时候可能更加灵活。在实际应用中,可以根据需要选择合适的方法。

发表评论
登录后可评论,请前往 登录 或 注册